GEBRUIKSAANWIJZING: daal in de linkse kolom neer tot helemaal onderaan,en klik met de muis op een hoofdstuk dat U interesseert.
Op de groene bladzijde die dan verschijnt,klik met de muis op de afbeelding bovenaan links.Dan kunt U een groot aantal schilderijen bekijken.Indien U niet zoudt uitkomen bij Uw keuze in de linkse kolom,daal dan in de hoofdkolom in het midden van de bladzijde naar beneden met de pijltjes uiterst rechts van het scherm,tot het gezochte gevonden is.
HOW TO USE THIS SITE : choose a chapter in the left column by clicking on it with the mouse.On the green page which appears.click with the mouse on the image in the left corner above.You will be able to view a great number of paintings.If you would not find immediately the chosen item,then scroll down on the main page until you encounter your preference.
26-04-2004
42 Fleming Ambrose
Ambrose Fleming ( 1849 - 18 april 1945 : werd 95 jaar oud )
Klik op de foto hiernaast om alle in de tekst aangeduide afbeeldingen te bekijken
Hier foto s Fleming1 naast ofwel Fleming2 of Fleming3
Fleming
is de engelse ingenieur , die de diode uitgevonden heeft , de eerste
radiolamp ooit , die de weg heeft geopend naar het ontstaan van de
radio-ontvangers -en zenders. Gepatenteerd in 1904 , werd ze toen
"thermionische lamp" genoemd , of "vacuum diode" , de "kenotron "
,of de "twee-elektrode-gelijkrichter ".
Hier
naast elkaar
:
1888
,
1889
,
lamp1
Fleming droeg bij tot de foto-metrie (meten van de
licht-intensiteit), de draadloze telegrafie , elektrische meetmethoden
,de ontwikkeling van de elektronica .Hij is de auteur van meer dan 100
wetenschappelijke publicaties en boeken . Daaronder : " The
alternate current transformer " (1889,1892) [ de oorspronkelijke studie
voor de IEE ,is bewaard in the Institute for Electrical
Engineers te Londen ], " The principles of electric wave telegraphy "
(1906) , " The propagation of electric currents in telephone and
telegraph conduction " (1911), " Memoirs of a scientific life "
(1934) .Op het gebied van elektrische (sterkstroom-) machines ,kennen
we van hem de linkerhandregel voor motoren en de rechterhandregel voor
generatoren ,waarbij de middelvinger ,de wijsvinger en de duim onder
rechte hoeken gespreid gehouden , de richting (en zin) van het veld ,de
stroom en de kracht aanduiden.
Hier figuur "handregels "
Hij
was raadgever van de Edison Electric Light Company ,van de
Marconi Wireless Telegraph Company ,Swan , Ferranti , Edison
Telephone Co.,en een populaire universiteits-professor zoals
Lecturer aan de universiteiten van Cambridge en Nottingham ( professor
of physics and mathematics ) en U.C.L. (University College London) . In 1929 werd hij voor zijn talloze verdiensten tot ridder geslagen , zodat hij zich van dan afaan "Sir ..." mocht noemen .
Het interessante leven van John Ambrose Fleming . Hij
werd geboren te Lancaster , Engeland ,op 29 november 1849 , als oudste
zoon van zeven kinderen , uit het gezin van de " congregatie-pastoor "
James Fleming en zijn echtgenote Mary-Anne .( Deze
familie-eigenschap zou tot gevolg hebben dat Fleming later in
verschillende katholieke kerken , zoals in Sint Martin in the Fields
,preken mocht houden , en dit tot na zijn gepensioneerde leeftijd .) De
familie van zijn moeder was afkomstig van Swanscombe in Kent , en
was pionier op het gebied van de vervaardiging van Portland cement .In
1854 verhuisde de familie naar het noorden van Londen , waar Fleming
het grootste deel van zijn jeugd doorbracht en ook de overige 70 jaar
van zijn aktief leven zou doorbrengen . Zijn vader stamde af
van een lange lijn Schotse voorvaderen van Vlaamse (Flemish ->
Fleming ) oorsprong , en had enige moeite hem in toom te houden en op
een klassieke manier op te voeden .Reeds op jeugdige leeftijd vertoonde
Fleming tekenen van grote intelligentie. Op 10-jarige leeftijd ging hij
naar een private school ,waar hij bijzonder geinteresseerd was in
meetkunde.Hij was de laatste van de klas in Latijn,en koos daarna ,
wegens zijn belangstelling voor wiskunde, voor universitaire
studies.Reeds op 11-jarige leeftijd , had hij gezegd dat hij ingenieur
wilde worden en hij had thuis een eigen werkplaatsje , waar hij
modelschepen bouwde, motoren, en een zelfontworpen fototoestel ,
waardoor ook een levenslang durende belangstelling voor
fotografie ontstond. Op zijn dertiende verjaardag gaf hij aan de
University-College-School , te West End , Londen , een voordracht over
elektromagnetische verschijnselen . Aan dit zelfde University
college,studeerde hij wiskunde onder de leiding van A.de Morgan en
G.Carey Foster.Na twee jaren studie ,verliet hij deze inrichting wegens
geldgebrek , en hij aanvaardde een job bij een scheepsbouwer in Dublin
.Dit werk beviel hem echter niet ,en reeds na enkele maanden gaf hij
het op en vond een andere baan bij de Londen Stock Exchange ,waar hij
gedurende twee jaren werkte . Als gevolg daarvan zou hij later ,
als leraar ,aan zijn studenten zeggen ," dat ze toch tenminste een
elementaire kennis moesten opdoen over hetgeen zich afspeelt in de
financiële wereld,teneinde geld te verdienen ,samen met een
optimistisch en vertrouwend publiek . ".In 1870 behaalde hij het
diploma van Bachelor of Science aan UCL.Daarna studeerde hij chemie aan
de Koninklijke Mijnschool . Terwijl hij werkte , volgde hij in 1870
avondlessen om zich te vervolmaken en vanaf januari 1871 kreeg hij
gedurende 18 maanden een baan als leraar aan de Rossall school , waarna
hij met het verdiende geld , terugkeerde als student chemie aan het
Royal College of Science in Kensington .Daar schreef hij een
wetenschappelijke verhandeling over "de voltaïsche batterij "
,gepubliceerd in de Proceedings van de Physical Society of London ,
hetgeen in die tijd een grote eer was die hem tebeurt viel .In 1874 gaf
hij les aan het Cheltenham College , opnieuw uit geldnood.Hij
correspondeerde met James Clerk Maxwell , professor aan de Cambridge
Universiteit . In 1877 kreeg hij een studiebeurs van het Sint Johns
College te Cambridge ,en studeerde hij elektriciteit en
magnetisme bij professor James Clerk Maxwell aan de Universiteit te
Cambridge, waar hij zijn doctoraat in de wetenschappen behaalde
(D.Sc.). Op dat ogenblik was hij al 28 jaar oud .Hij had de lessen van
Maxwell gevolgd, die vaak zo hoogstaand en moeilijk waren , dat Fleming
soms als enige student in de klas zat.Hij mocht daarna gedurende een
jaar ,in Cambridge werken als demonstrator van experimenten , voor
ingenieursstudenten in de mechanica .In 1881 werd hij gedurende een
jaar als professor in de wis-en natuurkunde aangesteld aan de
hogeschool-faculteit te Nottingham . Op dat ogenblik , dat de
elektrische verlichting voor het eerst in de belangstelling kwam
te staan van het groot publiek ,werd hij ook nog in dienst genomen door
de Edison Electric Light Company te Londen,een betrekking waarin hij de
daaropvolgende tien jaren zou blijven werken.Als raadgevend ingenieur ,
werkte hij plannen uit voor de elektrische verlichting van een groot
aantal steden , en loste samen met de stadsbesturen de problemen op ,
die daaromtrent ontstonden. Hij ontwierp als eerste , de
elektrische verlichting aan boord van schepen , en installeerde er
elektrische machines. Aan de wal bouwde hij hoogspannings-onderstations
, die voor het eerst werkten met wisselstroom .Fleming voelde zich
sterk aangetrokken door de fysica en werd door het University College
London (UCL) uitgenodigd daarover en over elektrische
ingenieurs-praktijken , een lessenreeks te komen geven .In 1885 vroeg
men hem daar een departement voor electrical-engineering (in een eerste
faze: "departement van elektrische technologie " genoemd) uit de grond
te stampen en hij werd daarin aangesteld als professor , een taak
die hij de volgende 40 jaar zou vervullen .Dit departement was op dat
ogenblik enig in zijn soort , en hij schreef er een veel gelezen boek
,over "telegrafie met elektrische golven ".Hij was bekend door zijn
grondige kennis van wisselstroom-metingen , en van het ontwerpen van
transformatoren .In 1899 werd hem , bovenop zijn professoraat aan de
universiteit, aangeboden , raadgever te worden bij de Marconi Company.
Marconi realiseerde in 1899 de eerste radio-uitzending met Morse
signalen (draadloze telegrafie) over het Kanaal tussen de engelse
en de franse kust. Marconi noemde van dan-afaan zijn bedrijf ," de
Marconi Wireless Telegraph Co Ltd ".De draadloze telegrafie stond toen
nog in haar kinderschoenen ,alhoewel Marconi er vanuit het Marconi
zendstation te Poldhu in 1901 in slaagde een eerste radio-bericht over
de Atlantische oceaan tussen Engeland en de Verenigde Staten van
Amerika over te zenden . Hiervoor maakte hij gebruik van de
radiozender die voor hem door Fleming ontworpen was .
Hier figuur "poldu "
Vóór
hem/hen hadden sommigen geprobeerd hoge frekwenties op te wekken
met speciaal daarvoor ontworpen wisselstroom-generatoren ,maar met deze
alternatoren bereikte men zelden frekwenties boven de 10 kHz .De
radiolamp was toen nog niet uitgevonden en een vonkenzender werd
gevoed door een 25 paardenkracht generator , aangedreven door een
dieselmotor .De antenne was 60 meter hoog opgehangen en werd in serie
gevoed met de sekundaire spoel van een transformator die Fleming voor
dat doel berekend had. Daarvoor had hij twee hoogfrekwente spoelen
evenwijdig met elkaar geplaatst,zodat ze magnetisch gekoppeld waren. De
uitzending gebeurde op een frekwentie die door Fleming (te hoog )
geschat werd op 500 kHz (hetgeen hij pas in 1935 bekend maakte ) , dus
op de grens van hetgeen we nu de overgang tussen de middengolf en de
lange golf noemen .Ook alle schepen zouden daarna uitgerust worden met
zenders-ontvangers ,werkend rond dit frekwentiegebied. Het is pas later
dat men de frekwenties zou verhogen.Merken we op dat er in 1901 nog
geen ontvangers bestonden , om de uitgezonden signalen op een
behoorlijke wijze te decoderen .De door de Fransman Branly in 1890
uitgevonden coherer die eerst de veranderlijke weerstand van
ijzervijlsel gebruikte , onder de invloed van aanstotende Hertze golven
,was de enige , zeer ongevoelige detector voor hoogfrekwente
signalen,waarmee men nog wel enkele punten en strepen kon waarnemen van
het opgepikte telegrafie-signaal.(enkele jaren later ook op de hoogste
verdieping van de eiffeltoren in Parijs door ingenieurs van de
toenmalige Bell-Telefoon ) . Achteraf zou hij vervangen worden door een
soort punt-kontakt halfgeleider -diode , waarbij de punt van een
wolfram-of-tungsteen-draad drukte op een galénesteen,dit is
galliumsulfide.
Hier figuur "detector "
Meer over Poldu : Marconi
was reeds in 1894 begonnen , de experimenten van Heinrich Hertz te
herhalen .Hij was gefascineerd door de Hertze golven en door de
uitvinding van de dipool-antenne door Hertz. Natuurlijk interesseerde
hem ook de commerciele kant van het eventueel draadloos uitzenden en
ontvangen van telegrafie-signalen met de toen pas uitgevonden
Morse-code. In 1896 slaagde hij erin een afstand van 2,5 kilometer te
overbruggen door boven de aarde een vertikale kwart -golflengte-antenne
op te stellen , die nu nog altijd " de Marconi
-antenne " genoemd wordt.
Hier figuur "1896 "
In
Engeland werd toen op zijn aanwijzingen , een dergelijke vaste
verbinding geïnstalleerd tussen het eiland van Wight , en Bournemouth
(1897) die op 22 kilometer van elkaar verwijderd lagen. Hij werkte
daarbij op een lage frekwentie in de HF-band , rond de 300 kHz.
Hier figuur "zender1"
In
1900 vatte hij het idee op om een transatlantische overzending te
proberen te verwezenlijken .In 1901 dacht hij daarbij aan
frekwenties tussen de 182 kHz en 500 kHz. Tenslotte koos hij in
Poldu voor 272 kHz en in oktober 1902 begon hij daarvoor een groot
antenne-systeem te bouwen,met reusachtige houten masten ,61 meter hoog
.Daaronder groef hij radiale metalen draden in de grond ,als
tegengewicht , die elk 305 meter lang waren . In 1904 experimenteerde
hij met een pyramidale ( soort regenscherm-discone-) antenne , die
bestond uit 400 metalen geleiders.In 1905 bouwde hij te Glace Bay in
Canada,een 55 meter hoge vertikale antenne met topcapaciteit die
bestond uit 200 horizontaal gespannen metalen draden. De uitzendingen
in telegrafie werden verwezenlijkt met een door hem gebouwde
vonkenzender.
De diode : de eerste radiolamp ooit . We kunnen
hier beter spreken over "lamp", dan over het later gebruikte woord
"buis ".In 1883 maakte Edison zich zorgen over een zwarte koolstoflaag
die zich aan de binnenkant van zijn gloeilampen afzette .Teneinde deze
neergeslagen film te minimaliseren , had hij een metalen plaat
ingesmolten tussen de gloeidraad en het glazen omhulsel . Daarop verder
zoekend , had hij de positieve klem van de batterij die het filament
voedde , aangesloten op de uitgangsklem van de plaat , en opgemerkt dat
er een kleine stroom vloeide doorheen de plaatkring ,gemeten met een
galvanometer .Hij stelde ook vast , dat wanneer hij de plaat met de
negatieve pool van de gloeidraad-batterij verbond , er geen stroom
vloeide in de plaatkring.
Hier figuur "diode " met onder andere de stroom-spanningskarakteristiek
Dit
verschijnsel wekte ,eveneens in 1883 , de belangstelling van Fleming
.In 1884 reisde hij naar de Verenigde Staten en ontmoette daar Edison
en bezocht de Edison laboratoria . In een verhandeling die hij in 1890
publiceerde bij de Royal Society , merkte hij op , dat wanneer hij de
Edison-lamp voedde met een wisselstroom in plaats van met gelijkstroom
, de wisselstroom werd omgezet in gelijkstroom. Hij noemde dit :
"gelijkrichting " (rectification) .Het is slechts 14 jaar later , dat
hij deze vinding publiek maakte , door er in 1904 een patent op te
nemen , waarin hij de aldus gebruikte lamp , de "
oscillating valve " noemde , later bekendgemaakt onder de
benaming " thermionic valve " of "thermionic diode ".De
serieproduktie daarvan werd door de Marconi - maatschappij aangevat.
Hier figuur "lamp" , met daarnaast figuur "dioden"
Hij
stelde vast dat de gelijkrichting ook plaats vond op hoge frekwenties ,
en daarmee was de radio-detector geboren , die de coherer van Branly
zou vervangen. Zijn opzoekingswerk concentreerde hij in 1896 op
kathodestralen , en drie jaar later werd hij aangesteld als
wetenschappelijke raadgever aan de Marconi Wireless Telegraph
Company.Daar duidde hij aan , welk materiaal en welke opstelling men
moest gebruiken voor de eerste overzending van telegrafie-signalen over
de atlantische oceaan in 1901 .Als Marconi-raadgever had hij ook
nog tijd genoeg om parallel daarmee te werken bij de National Telephone
Company en de Ediswan Electric Light Company , betrekkingen waarin hij
andere ervaringen opdeed .
De uitvinding van de diode. ---------------------------------- Fleming
vertelde hoe hij de diode had uitgevonden : "In 1882 , kwam ik als
raadgever van de Edison Electric Light Company te Londen , in
aanraking met de vele problemen die de toenmalige gloeilampen
opleverden , en ik begon de fysische verschijnselen die daarmee gepaard
gingen te bestuderen met al de middelen die in die tijd ter beschikking
stonden. Het viel mij op , dat de gloeidraden braken bij de geringste
schok , en dat het glas van uitgebrande lampen ,verkleurd was.Daarbij
viel mij op dat er telkens een lijn over het zwart uitgeslagen of met
een metaalfilm bedekt glas liep , die niet verkleurd was, net alsof
iemand er met een vingernagel inwendig zou op gekrast hebben . De niet
verkleurde figuur had de vorm van de speld-vormige gloeidraad,waarbij
opviel dat het niet gebroken gedeelte van de gloeidraad gewerkt had als
een scherm tegen het bombardement van het inwendige van het glas door
de koolstofmoleculen of door verdampt metaal van de gloeidraad. Ik
besloot daaruit dat de verkleuring van het glas ( die het
lichtrendement van de lamp verminderde) zou kunnen tegengaan worden
door op de plaats waar het glas het meest gebombardeerd werd , een
metalen plaat op te stellen tussen glas en gloeidraad .Deze plaat
bracht ik met een afzonderlijke verbinding naar buiten het glas van de
lamp en ik begon proeven uit te voeren door een potentiaalverschil toe
te passen tussen de (metalen) gloeidraad en de plaat.Ik stelde daarbij
tot mijn verbazing vast dat een milliamperemeter enkel een stroom
aanduidde , wanneer de negatieve klem van de gebruikte batterij aan de
gloeidraad lag en de positieve klem aan de plaat, maar niet omgekeerd.
Daaruit besloot ik dat het mogelijk moest zijn met deze "thermionic
valve" een wisselstroom gelijk te richten , een begrip dat in die tijd
nog niet bestond ." Hij schreef hierover een brief naar
Marconi,omdat hij sedert 1899 ook als raadgever in dienst was bij de
Marconi Company , zonder zijn professoraat aan de UCL ( University
College London) te moeten opgeven . Wanneer hij een wisselspanning
tussen gloeidraad en plaat toegepaste , duidde de amperemeter een
kontinue stroom aan,doordat er telkens slechts een halve golf ,(steeds
aan de zelfde zijde van de tijdsas=enkelvoudige of
één-alternans-gelijkrichting ) , van de aangelegde wisselspanning werd
doorgelaten. Het open-blijvend gedeelte in de tijd , kon hij opvullen
door een kondensator parallel te schakelen met zijn buis , die achteraf
de diode genoemd werd met een kathode (in het begin de gloeidraad ,
later een afzonderlijke cilinder rond de gloeidraad) en een anode , de
toegevoegde plaat . In het geval van een metalen filament of metalen
kathode , gaf deze een elektronen-stroom af , die aangetrokken werd
door de positieve plaat .Hij patenteerde zijn vondst op 16 november
1904 .
hier figuur "patent "
Het was in oktober 1904
dat Fleming ,zoals hij zelf zei , "een goede inval "had.Hij wist dat
meters en telefoons te traag waren om hoogfrekwente spanningen en
stromen te registreren en als gemiddelde waarde , nul aanduidden.
Denkend dat een gloeilamp met warme gloeidraad (die elektronen uitzendt
door verstoring van de molekulaire struktuur,vooral als de gloeidraad
of kathode,aangesloten wordt op de negatieve pool van een
batterij=teveel aan elektronen , en de plaat of anode aan de positieve
pool=tekort aan elektronen), stroom in slechts 1 richting en zin zou
doorlaten ,speculeerde hij er op dat dit ook wel zou gelden voor
hoogfrekwente stromen en hij vroeg aan zijn assistent G.B. Dyke , dit
idee uit te testen . Het werkte, en een maand later schreef Fleming
naar Marconi ( in wiens dienst hij toen als raadgever werkte) "ik heb
hoogfrekwente trillingen kunnen ontvangen op een antenne , met niets
meer dan een spiegelgalvanometer (die de gelijkgerichte hoogfrekwente
stroom aanduidde , met een zich verplaatsend lichtpunt op een
muur ,namelijk de punten en strepen , die hij met een kleine boogzender
,met morse-sleutel uitzond) en mijn gewijzigde gloeilamp ". Deze
vinding bracht hem financieel geen voordeel , want Marconi nam het
patent (Fleming patent 803684 van 13 november 1905) over en
vervaardigde enkele dioden.
Hier figuur 1905
Enkele
jaren later , produceerde H.H. Dunwoody van de Lee De Forest Wireless
Co ,in de V.S.A. ,de kristal detektor , een belangrijke rivaal voor de
Fleming/Marconi diode.Er werd van toen af ,onderzoekingswerk verricht
op de gelijkrichtende eigenschappen van kristal-strukturen zoals
carborundum,galena ( = lood-sulfide) en silicium , die superieure
detektoren bleken te zijn . De kristal-detektor was een zet van Lee De Forest tegen Marconis dominantie van het radio-gebeuren in die tijd.
Hier figuur "radio" met daarnaast figuur "1910"
Fleming
kreeg voor zijn uitvinding pas in 1921 de grootste onderscheiding , de
"Goud-Medaille", hem toegekend door de Royal Society of Arts , in
Londen .Dat dit zo laat gebeurde , is toe te schrijven aan het feit dat
de uitvinding van Fleming een gelijkenis vertoonde met een patent dat
reeds in 1883 door Edison was genomen voor een gloeilamp met metalen
plaat , die een gelijkenis vertoonde met die van Fleming , maar waar
een rechtbank in 1920 Fleming gelijk gaf op het gebied van de
oorspronkelijkheid van zijn uitvinding.Vroeger had hij reeds de Kelvin
Medaille gekregen,de Faraday Medaille van de Institution of Electrical
Engineers , en de Franklin Medaille van het Franklin Institute in
Philadelphia , USA. Hij ging slechts op 77-jarige leeftijd met pensioen
.In 1929 , twee jaar na zijn pensionering (hij ging in Devon wonen in
1926 in het rustig stadje Sidmouth, waar hij nog bijna 20 jaar
doorbracht in de kuststreek met een rustgevend zicht op water en zee )
werd hij tot ridder geslagen voor zijn bijdragen aan de elektriciteit
en de elektronika. Tijdens zijn pensionering hield hij van lange
wandelingen en fotograferen ,maar wist hij ook nog niet van ophouden en
hij werd president van de toen gestichte "Television Society", waar in
die tijd de eerste schreden werden gezet op het gebied van de
ontwikkeling van de televisie . Fleming werd 95 jaar oud , maar was
op het einde van zijn leven stokdoof ,een familietrek , waaronder ook
zijn zuster leed . Hij stierf op 18 april 1945 , dus op het einde van
de tweede wereldoorlog .Hij kreeg een memorial in de Saint Johns
-College kapel .Hij was tweemaal getrouwd , maar zonder
afstammelingen.Zijn eerste vrouw ,Clara Ripley , stierf in 1917 , maar
zijn tweede,Olive Franks ,met wie hij huwde op 84-jarige leeftijd,
overleefde hem.
Enkele beschouwingen over licht , door Ambrose Fleming. In
het midden van de 19e eeuw wist men dat licht een bron was van energie
, doordat men een stuk papier of sprokkelhout in brand kon steken ,
door daarop zonnestralen te concentreren met een convergerende
lens.Bovendien wisten Fresnel,Thomas Young , Brewster , Hamilton ,
Stokes , en later Kelvin ,dat licht een periodische trilling was , en
dat lichtstralen konden afgebogen en gebroken worden .Ze kenden ook het
begrip interferentie , dat ons leert ,dat twee lichtstralen die met een
gepast fazeverschil worden samengesteld (bv. in tegenfaze), elkaar
kunnen opheffen en duisternis produceren .Bovendien wisten ze dat licht
gepolariseerd is .Men nam aan dat licht een weerstand ondervindt
,wanneer het de ruimte , die voorgesteld werd als een
mechanisch-elastische materie , doorstraalt . Dit laatste bleek
onjuist te zijn , toen in 1865 het wetenschappelijk genie James Clerk
Maxwell ten tonele verscheen met geheel andere hypothesen . Maxwell
stelde , dat licht een "diëlectriciteits-koëfficient " had , met waarde
1 ( = er ) , een begrip , waar nog nooit iemand van gehoord had , en
dat deze ook bestond tussen de twee metalen platen van een kondensator
, met waarden ,verschillend van 1 , afhankelijk van de aard van de
isolatie tussen die platen .Hij stelde dat de aanwezigheid van dit
diëlectricum , een " verschuivingsstroom " veroorzaakte , wanneer men
een potentiaal-verschil tussen die platen toepaste .Die
verschuivingsstroom , die gepaard ging met elektrostatische
veldlijnen , bestond zelfs in het luchtledige, dus ook in de
hogere luchtlagen boven de aarde .Op dezelfde wijze als hij een
diëlectriciteitskonstante definieerde , bepaalde Maxwell ook de (
magnetische ) permeabiliteit , een andere konstante , niet meer in
verband met elektrische , maar met magnetische veldlijnen ,en ook
gelijk aan 1 ( = mr ) in het luchtledige . Maxwell bewees
wiskundig , dat licht bestaat uit twee loodrecht op elkaar
staande trillingen , die een "vlakke golf " vormen , die zich
volgens een vektor loodrecht op dat vlak , voortplant in de ruimte ,met
een snelheid gelijk aan 1/Öer. mr ( 1 , gedeeld
door de vierkantswortel uit het produkt epsilon r , maal mu r ) ,
waarin aan er en mr zodanige waarden werden
toegekend , dat deze berekening een lichtsnelheid van iets minder dan
300000 kilometers per sekonde opleverde . Hij was dus de eerste in de
wereldgeschiedenis , die draadloze golven beschreef , die zich in de
ruimte konden voortplanten , de basis , zoals later zou blijken , voor
alle radio - en televisie - zend- en ontvangst- technieken . In 1864
stuurde Maxwell deze beschouwingen naar de "Royal Society of Londen ",
getiteld "Dynamical Theory of the Electro-Magnetic Field ". Men moest
daarna nog 23 jaar wachten , tot Heinrich Hertz in Duitsland ,
experimenteel electromagnetische golven opwekte , met een lagere
frekwentie , dus een grotere golflengte dan het licht .Merken we
terloops op , dat al het pionierswerk , dat in die periode plaatsvond ,
steeds gebeurde op de zogenaamde korte golven of
meter-tot-centimeter-golven: door Hertz in 1888, door Morse in 1894 ,
door Marconi in 1896,door Braun in 1899 . In de tijd van Hertz ,
Kirchoff , Bunsen , Faraday , had men ook reeds vastgesteld dat
ultraviolet licht , licht is met een hogere frekwentie ,dus een
kleinere golflengte , dan violet licht , en dat het bepaalde gassen
ioniseert , waardoorheen het gestraald wordt . Dit ioniseren , bestaat
er in , dat elektronen losgeslagen worden uit de atomen . Men stelde
vast dat dit ook gebeurde ,wanneer lichtenergie viel op de in die tijd
juist ontdekte alkali - metalen ,cesium en rubidium , alsook op kalium
en zink .Dit vergde in het toen gangbaar cgs-stelsel een energie van 3
billi-ergs , dat is 3.10-12 ergs per sekonde .Dit foto -
elektrisch effekt zou weinige tijd later gebruikt worden voor de
vervaardiging van fotocellen , en nog later voor de fabricage van
televisie-opnamebuizen .Het feit , dat men sprak over de beïnvloeding
van atomen door licht , deed een tweede interpretatie van de
lichtstroom ontstaan , namelijk de "corpusculaire " versie , die licht
beschouwde als een stroom van kleine met energie geladen deeltjes , de
fotonen , ook "quanta" van energie genoemd , die insloegen op de
bestraalde materialen .Met verschillende afmetingen , kunnen de quanta
verschillende hoeveelheden energie bevatten . Zo bevatten de fotonen
van rood licht , minder energie dan de fotonen van violet en
ultraviolet licht , maar de rode fotonen zijn talrijker dan de
violette. Deze laatsten veroorzaken foto-elektriciteit , hetgeen de
rode fotonen niet kunnen , namelijk vrijmaking van elektronen uit
fotografische platen en films ( die in het licht van rode lampen
ontwikkeld en bekeken worden ! ). Ultra-violet licht vernietigt door
zijn sterke straling ook schadelijke bacterieën , een eigenschap
waarvan men gebruik maakt in de biologie . Er bestaat een betrekking tussen de energie E en de frekwentie f van het licht: E = f.h waarin h de konstante is van Planck met waarde 6,55.1027. Geel licht heeft een
frekwentie van 5. 1014 en een geel foton heeft een energie van
32,5/1013 of 3,25 billi-ergs ,zoals Fleming nog in het vroegere cgs -
stelsel berekende .Een violet foton bezit tweemaal zoveel energie
als een rood foton.De energie van een X-straal foton is 25000 maal
groter dan van een geel foton ,zodat de blootstelling van het menselijk
lichaam aan X_stralen , uiterst gevaarlijk is . Deze krachtige stralen
vernietigen de menselijke huid . Alle fotonen planten zich met
dezelfde (licht-)snelheid van 300000 km/sek. voort doorheen de ruimte
.Een foton heeft een zekere massa of gewicht,dat bekomen wordt door
zijn energie te delen door het kwadraat van de lichtsnelheid .Indien e
de foton-energie is ,uitgedrukt in ergs ,dan is e/9. 1020 de
massa in gram .Indien een geel foton een energie heeft van 3,25
billi-ergs ,dan is zijn massa in gram (3,25/1012).(1/9.1027)=
3,61/1033. Daaruit kan men berekenen hoeveel fotonen er voorkomen in 1
kubieke centimeter ruimte ,gevuld met helder geel licht. Overwegend dat
de energie van een geel foton 3,25/1012 erg is ,moeten er in 1 kubieke
centimeter ruimte , 14 miljoen fotonen voorkomen ,die zich in deze
ruimte voortbewegen met de lichtsnelheid.Omdat een lichtstraal een
elektromagnetische golf is met maksima en minima ,komen de meeste
fotonen voor op plaatsen waar de elektrische en magnetische veldsterkte
het grootst zijn .De golf zelf bevat weinig energie ,omdat deze in de
fotonen zit.In de nul-doorgangen van de golf zitten er geen fotonen en
geen elektrisch en magnetisch veld. Men kan een vergelijking maken
tussen het licht en fysische stoffen.Deze laatsten zijn opgebouwd uit
chemische atomen die bestaan uit een proton en er in banen
ronddraaiende electronen. In een waterstofatoom is het proton
1840 maal zwaarder dan het elektron. Onze zon verbrandt elke minuut 240
miljoen ton waterstof om licht en warmte te produceren ,en ze doet dat
reeds 3,5 miljard jaar lang .(Hoelang nog ?).Zoals reeds opgemerkt
wordt het zonlicht uitgestraald onder de vorm van kleine pakketten
energie , licht-quanta genoemd. Een tungsteen-atoom van het
tungsteen-metaal dat in elektrische gloeilampen gebruikt wordt ,is 184
maal zo zwaar als een waterstof-atoom en zijn gewicht is 338540 maal
dat van een waterstof-electron . Een foton van geel licht weegt slechts
1/300000-ste deel van een waterstof-electron.Bijgevolg heeft een
licht-foton bijna geen massa in vergelijking met waterstof en zeker
niet in vergelijking met tungsteen .Wanneer een atoom straling uitzendt
,gebeurt dit met een geheel aantal fotonen of quanta.Wanneer een atoom
straling opslorpt , neemt het daarentegen slechts 1 enkel foton op.
Wanneer de energie van het foton onvoldoende is om het atoom te
ionizeren,dan zal het atoom dat foton niet absorberen . ( ziedaar de overwegingen , gemaakt door Fleming , tijdens de eeuwwisseling 1800-1900).
Naschrift. Het
volgend artikel over pioniers,in dit tijdschrift , beschrijft de
prestaties van Lee De Forest , die de triode uitvond.Hierdoor
kwam een kettingreaktie op electronica- gebied op gang , onder
meer door de uitvinding van een reeks oscillatoren . In 1905
patenteerde De Forest zijn twee elektroden-buis .Hij noemde deze diode
, een "audion".Fleming vond dat zijn idee gestolen was en beschuldigde
De Forest van plagiaat,waarna een bitter gevecht volgde voor de
rechtbank. Fleming verloor het proces .In oktober 1906 voegde Lee De
Forest een derde elektrode toe aan zijn diode,waardoor de eerste triode
geboren was , die hij patenteerde in 1907 . Er waren drie batterijen op
aangesloten in plaats van één of twee (gloeidraad-batterij
en plaatkring-batterij , ofwel in plaats van deze laatste , een
wisselspanningsbron) , zoals bij Fleming het geval was.Hij noemde ze
nog steeds "audion", waardoor verwarring ontstond met zijn
audion-diode.
Hier figuur "Philips "
Tien jaar
later waren tal van schepen met een niet te kleine tonnemaat ,
uitgerust met radio zend-en ontvangstapparatuur.( de Marconi-Fleming
radio-ontvanger met buizen , waaronder speciaal ontworpen lampen , door
Fleming besteld bij de Edison fabriek,en door hem gepatenteerd op
25 januari 1908) Na 1918 werden in de lampen , thorium-gloeidraden
gebruikt, die , ofschoon ze op een lagere temperatuur verwarmd werden ,
een vijfmaal hoger rendement hadden dan wolfram-draden of met
ferro-alkalisch-metaaloxide , bedekte gloeidraden . In 1913 werden
de oscillatoren uitgevonden als opwekkers van ongedempte trillingen,en
wel op drie plaatsen tegelijkertijd : in Engeland door Franklin, in
Duitsland door Meissner , en in de V.S, door Armstrong.Kort daarna
zouden de modulatoren van deze trillingen het daglicht zien , onder
meer ook (FM) door Armstrong,waardoor het hele radio-gebeuren nog meer
op gang getrokken werd. In 1915 verschenen de superheterodyne en de enkele-zijband transmissie op het toneel .
Geraadpleegde werken :
1)On the nature of light , door Sir Ambrose Fleming , D.Sc. , F.R.S. , in Television , November 1931 en tweede deel idem in Television for december 1931. 2)John Ambrose Fleming: The Birth of Electronics, door W.A.Atherton,in Electronics World + Wireless World , Aug.1990 3)
J.A.Flemimg: "The Thermionic Valve and it s developments in
Radiotelegraphy and Telephony ",uit The Wireless Press Ltd.,1919 4) Department of Electronic & Electrical Engineering-University College London ,Torrington Place ,Londen. 5) De electronenbuis : tachtig jaar , uit Philips/MBLE publicatie ,1990 6) De vijftigste verjaardag van de uitvinding van de electronenbuis door Sir. Ambrose Fleming , uit de Radio Revue , 1960 . 7) On the nature of light , part I + Part II , door Sir.Ambrose Fleming, D.Sc. , F.R.S ., Electronics World + Wireless World , 1985 8) Internet : electronic concepts door Jerrold H. Krenz. 9) Internet :Science and Society Picture-Library (Science Museum) 10) Internet : Antentop , door John.S.Belrose 11) Internet : From coherer to DSP , door M.Lemme en R.Menicucci. 12) Fleming : uit EBU Technical Review ,spring 1995 , door Lemme & Menicucci .
Reacties op bericht (6)
19-09-2024
halloween jackets
Our website is a premium name in the world of replica jackets. New American Jackets has been selling celebrity and movies-inspired outfits for years. At the same time, this is your chance to have your hands on all the popular costumes that can make your cosplay and Halloween styles way more stunning. So, what are you waiting for? Visit us now and shop all the elegant options you have been looking for.
We are J4 Jacket, and we deal in a captivating range of jackets, from the closets of your favorite celebrities to their movie and TV series wardrobes. Besides, we also have fascinating costume-inspired jackets from the superheroes' attires . Click the link to begin the exciting clothing adventure. the ministry of ungentlemanly warfare wardrobe
15-08-2024, 08:39
Geschreven door the ministry of ungentlemanly warfare wardrobe
13-08-2024
Interview with The Vampire Leather Jacket
New American Jackets is the best name when it comes to celebrities and movie-inspired outfits. This is your chance to buy all of your favorite jackets and coats you have been looking for so long. Visit us now and place your order for all the trendsetting ensembles that can upgrade your fashion theory.
Interview with The Vampire Leather Jacket