The purpose of this blog is the creation of an open, international, independent and free forum, where every UFO-researcher can publish the results of his/her research. The languagues, used for this blog, are Dutch, English and French.You can find the articles of a collegue by selecting his category. Each author stays resposable for the continue of his articles. As blogmaster I have the right to refuse an addition or an article, when it attacks other collegues or UFO-groupes.
Druk op onderstaande knop om te reageren in mijn forum
Zoeken in blog
Deze blog is opgedragen aan mijn overleden echtgenote Lucienne.
In 2012 verloor ze haar moedige strijd tegen kanker!
In 2011 startte ik deze blog, omdat ik niet mocht stoppen met mijn UFO-onderzoek.
BEDANKT!!!
Een interessant adres?
UFO'S of UAP'S, ASTRONOMIE, RUIMTEVAART, ARCHEOLOGIE, OUDHEIDKUNDE, SF-SNUFJES EN ANDERE ESOTERISCHE WETENSCHAPPEN - DE ALLERLAATSTE NIEUWTJES
UFO's of UAP'S in België en de rest van de wereld Ontdek de Fascinerende Wereld van UFO's en UAP's: Jouw Bron voor Onthullende Informatie!
Ben jij ook gefascineerd door het onbekende? Wil je meer weten over UFO's en UAP's, niet alleen in België, maar over de hele wereld? Dan ben je op de juiste plek!
België: Het Kloppend Hart van UFO-onderzoek
In België is BUFON (Belgisch UFO-Netwerk) dé autoriteit op het gebied van UFO-onderzoek. Voor betrouwbare en objectieve informatie over deze intrigerende fenomenen, bezoek je zeker onze Facebook-pagina en deze blog. Maar dat is nog niet alles! Ontdek ook het Belgisch UFO-meldpunt en Caelestia, twee organisaties die diepgaand onderzoek verrichten, al zijn ze soms kritisch of sceptisch.
Nederland: Een Schat aan Informatie
Voor onze Nederlandse buren is er de schitterende website www.ufowijzer.nl, beheerd door Paul Harmans. Deze site biedt een schat aan informatie en artikelen die je niet wilt missen!
Internationaal: MUFON - De Wereldwijde Autoriteit
Neem ook een kijkje bij MUFON (Mutual UFO Network Inc.), een gerenommeerde Amerikaanse UFO-vereniging met afdelingen in de VS en wereldwijd. MUFON is toegewijd aan de wetenschappelijke en analytische studie van het UFO-fenomeen, en hun maandelijkse tijdschrift, The MUFON UFO-Journal, is een must-read voor elke UFO-enthousiasteling. Bezoek hun website op www.mufon.com voor meer informatie.
Samenwerking en Toekomstvisie
Sinds 1 februari 2020 is Pieter niet alleen ex-president van BUFON, maar ook de voormalige nationale directeur van MUFON in Vlaanderen en Nederland. Dit creëert een sterke samenwerking met de Franse MUFON Reseau MUFON/EUROP, wat ons in staat stelt om nog meer waardevolle inzichten te delen.
Let op: Nepprofielen en Nieuwe Groeperingen
Pas op voor een nieuwe groepering die zich ook BUFON noemt, maar geen enkele connectie heeft met onze gevestigde organisatie. Hoewel zij de naam geregistreerd hebben, kunnen ze het rijke verleden en de expertise van onze groep niet evenaren. We wensen hen veel succes, maar we blijven de autoriteit in UFO-onderzoek!
Blijf Op De Hoogte!
Wil jij de laatste nieuwtjes over UFO's, ruimtevaart, archeologie, en meer? Volg ons dan en duik samen met ons in de fascinerende wereld van het onbekende! Sluit je aan bij de gemeenschap van nieuwsgierige geesten die net als jij verlangen naar antwoorden en avonturen in de sterren!
Heb je vragen of wil je meer weten? Aarzel dan niet om contact met ons op te nemen! Samen ontrafelen we het mysterie van de lucht en daarbuiten.
23-10-2025
NASA quietly deploys planetary defense tools after interstellar visitor shows odd light behavior
NASA quietly deploys planetary defense tools after interstellar visitor shows odd light behavior
NASA has quietly made a major move to defend the planet after the mysterious interstellar object displayed more strange and unexplainable behavior.
The supposed comet, dubbed 3I/ATLAS, has just been added to the list of threats tracked by a United Nations-endorsed group focused on planetary defense against near-Earth objects.
The International Asteroid Warning Network (IAWN) works alongside institutions across the world that detect, track, and study near-Earth objects (NEOs) to assess potential impact threats to Earth.
3I/ATLAS is the first interstellar object ever added to the list, triggering a worldwide drill aimed at improving detection skills for space rocks and preparing Earth for a potential incoming threat.
On Tuesday, officials with IAWN admitted that the object was causing 'unique challenges' for predicting its trajectory and decided to add 3I/ATLAS to the Comet Astrometry Campaign.
According to the release, scientists will be running a special training exercise from November 27, 2025, to January 27, 2026.
Telescopes and tracking systems around the world will focus on 3I/ATLAS to refine methods for pinpointing its exact location in the sky.
The supposed comet, 3I/ATLAS, has become the first interstellar object added to the list of threats tracked by the International Asteroid Warning Network (IAWN)
The Two-Meter Twin Telescope in the Canary Islands captured an image showing a faint jet of particles from 3I'ATLAS pointing toward the sun, something comets don't normally do
'They're calling it 'a test of improved astrometry methods.' In other words, the object isn't behaving like it should,' one person wrote on X.
'When every telescope from Mauna Kea to Chile is being synced on one object, that's not a drill,' another X user posted.
The Daily Mail reached out to NASA on Wednesday, but the agency maintained that the entire space program is 'currently closed' due to the ongoing government shutdown and did not comment further.
It is part of IAWN, along with the likes of the European Space Agency, which are all helping to organize this as a team effort to keep Earth safe from nearby asteroids and comets.
NASA isn't launching rockets to defend the planet from 3I/ATLAS, with the announcement treating this major event more like a tip-sharing exercise for stargazers everywhere to take better pictures of the supposed comet.
While scientists claimed they do not plan to begin the worldwide watch party until late November, 3I/ATLAS is just days away from making its closest approach to the sun, slipping out of view.
Harvard scientist Avi Loeb has theorized that this shocking 'maneuver' is a telltale sign of a spacecraft using the gravity of a large star to change its speed and course.
Before its recent strange behavior near the sun, 3I/ATLAS was scheduled to make its closest pass by Earth in December, but skeptics claim that activating the planetary warning system is proof that government officials fear this is no harmless comet.
NASA's James Webb Telescope spotted the interstellar visitor in August, which has since been discovered to be composed of strange materials including nickel
Loeb explained that in space travel, the best time to speed up or slow down a spacecraft is when it's closest to a large object, since firing the engine at that point, known as the Oberth effect, gives the biggest change in speed.
3I/ATLAS will reach its best window for an Oberth maneuver in one week when it comes within 126 million miles of our sun.
Whether it's a comet or something sent by an intelligence elsewhere in the galaxy, astronomers have concluded that it could be gigantic, with a diameter of more than 28 miles.
'If 3I/ATLAS is a massive mothership, it will likely continue along its original gravitational path and ultimately exit the Solar system,' Loeb shared in a Sunday blog post.
The professor has previously suggested that 3I/ATLAS could be a nuclear-powered craft after the Hubble Space Telescope revealed a picture that appeared to show the object generating its own light this summer.
During its closest pass by Mars on October 3, space probes sent back images which seemed to suggest that 3I/ATLAS was a giant cylindrical object coated in nickel, causing it to glow green.
This has fueled even more speculation that the comet is an extraterrestrial probe, as human spacecraft use nickel in the same way to protect them from super-hot rocket exhaust.
The object discovered by miners in Western Australia on Saturday is of extraterrestrial origin. Experts identified it as a fragment of a Chinese Jielong-3 rocket stage. Its fall once again highlights the importance of solving the problem of space debris.
Mysterious burning object in Australia. Source: phys.org
Mysterious burning object
On October 18, workers at a mine in the Pilbara region of Western Australia discovered a mysterious burning object lying on the ground. At first, it was assumed that it had fallen from space, so specialists from the Australian Space Agency arrived at the site. After inspection, they confirmed that the object was indeed connected to Earth’s orbit, but its origin turned out to be terrestrial.
To be more precise, the object turned out to be a fragment of a stage of the Chinese Jielong-3 rocket. Most likely the one that launched 12 communications satellites into orbit in September this year. More precisely, the space agency has determined with certainty that it is a fuel tank, while the rest are details that still need to be confirmed.
But if it is indeed a fragment of a Chinese rocket, then according to the international agreement on space, they have to be fully responsible for the consequences of its fall. But the debris should be returned to them.
Space debris
This time, the fuel tank crash in Australia did not have any consequences. But overall, this is a huge problem. The space around Earth is becoming increasingly crowded. There are more than 10,000 active satellites and possibly up to 40,000 pieces of space debris larger than 10 cm. By the end of this decade, approximately 70,000 satellites could be in low Earth orbit, at an altitude of less than 2,000 km.
And of all the space debris, fuel tanks and rocket stages are the most problematic. If satellites are initially designed to burn up completely in the atmosphere, then the tanks have to be made of a more heat-resistant material that can easily survive re-entry into the atmosphere, allowing them to reach the surface.
A report presented at the International Astronautical Congress in Sydney earlier this month lists the 50 most dangerous pieces of space debris in low Earth orbit, 88% of which are rocket bodies.
Usually, to avoid problems with spent stages, enough fuel is left in them to ensure their descent into an uninhabited area over the Pacific Ocean. But the Chinese often fail to do so, resulting in their rocket stages falling in random locations.
While comet 3I/ATLAS and its dusty tail remain far out of the reach of Earthly spacecraft, astronomers say the unusual interstellar object has produced a secondary “hidden” trail of charged particles marking its path through our solar system.
Now, a pair of scientists with the European Space Agency (ESA) has proposed a bold idea: it may be possible to sail a pair of NASA and ESA spacecraft through the mysterious visitor’s “ion tail.”
The idea was advanced by a pair of researchers in a new paper, which argues that the trajectory of NASA’s Europa Clipper spacecraft and the European Space Agency’s (ESA) Hera spacecraft could allow them to pass directly through the trail of ions left in 3I/ATLAS’s wake.
Doing so might offer astronomers a rare opportunity to collect samples of material from other worlds, which the odd interstellar comet has ejected during its unprecedented visit.
Mission Into an Interstellar Object’s Odd “Ion Tail”
Between October 30 and November 6, 2025, the trajectories of the Europa Clipper and Hera space missions may briefly align with the ion trail left by 3I/ATLAS, allowing their instruments to collect information through detections of charged particles carried outward from the object by the solar wind.
“During the period 30 October – 6 November 2025, it is predicted that Europa Clipper will potentially be immersed within the ion tail of 3I/ATLAS, providing the opportunity to detect the signatures of an interstellar comet’s ion tail, write authors Samuel Grant and Geraint Jones in their paper, which appeared on the preprint arXiv.org server on October 15, 2025.
“Characteristic changes to the solar wind are also expected to be observed,” the authors say, which will likely include what they characterize as “a magnetic draping structure” potentially emanating from the comet.
Even prior to Europa Clipper’s potential passage through the mysterious ion tail of 3I/ATLAS, Grant and Jones believe that the ESA’s Hera spacecraft “will possibly be immersed within the ion tail of 3I/ATLAS during the period 25 October – 1 November 2025.”
Neither spacecraft will be endangered during their potential transit of the interstellar comet’s tail of charged particles, although the implications of doing so could end up being profound, in that they may offer the first opportunity to make indirect observations of material samples from another star system.
A Fortuitous Cosmic Alignment
Grant and Jones are uniquely placed to make such predictions about these space missions and their path in the ion wake of 3I/ATLAS, as they are the ESA researchers behind Tailcatcher, a computer model that tracks how packets of solar wind interact with comets.
Concept art of NASA’s Europa Clipper mission
(Image Credit: NASA/JPL)
According to their calculations, Europa Clipper may be equipped to detect very subtle changes in the plasma environment in space as the comet’s material sweeps by it, moving at speeds of several hundred miles per second.
The Rarity of Interstellar Visitors
One reason 3I/ATLAS captivates astronomers is its origins beyond our solar system, which likely helps explain several of its odd characteristics. Unlike comets from within our solar system, objects like 3I/ATLAS and its predecessors 2I/Borisov and 1I/Oumuamua hail from stars in vastly distant regions in space, and therefore carry with them material they obtained during these interactions that occurred eons ago.
Because of this, current observations about 3I/ATLAS estimate that it is not only the fastest comet ever observed by astronomers, but also potentially the oldest they have ever seen.
Given their rarity, we have been able to collect virtually no data about the composition of these interstellar objects. All the information we have comes from telescopic observations or those made using camera systems on board various space probes, like those currently orbiting Mars.
Recent ESA imagery of 3I/ATLAS, obtained by the agency’s ExoMars Trace Gas Orbiter
(Credit: ESA/TGO/CaSSIS).
As recent attempts at visualizing 3I/ATLAS have shown, at times these observations can prove to be especially challenging—not to mention the fact that amid the U.S. government shutdown, NASA has been unable to release what could be some of the most important visuals yet obtained of 3I/ATLAS, believed to have been made by the HiRISE camera aboard the Mars Reconnaissance Orbiter (MRO) earlier this month.
3I/ATLAS’s “Hidden” Tail
Like the interstellar object itself, the dust trail produced by 3I/ATLAS is also well out of reach of any current space missions. However, the same can’t be said of the ionic tail the object produces while being bombarded by solar winds during its approach near the Sun.
Driven by this constant and extremely powerful flow of highly charged particles that disperse throughout our solar system from the Sun, particulates ejected from 3I/ATLAS, apart from the dusty material that immediately surrounds it, are carried away from the object in the same direction as the solar wind, producing a secondary ion tail.
Given the challenges that collecting data about these objects presents, an opportunity to sample ions left in its tail of highly charged particles, even indirectly, could provide us with the closest look at the chemistry of an alien solar system that astronomers have ever obtained.
A Missed Opportunity?
It is frustrating, therefore, that amid the ongoing U.S. government shutdown, Europa Clipper currently remains in cruise mode as it makes its way toward Jupiter and may not be able to activate its scientific instruments before this rare encounter approaches.
Hence, while we await seeing whether the MRO’s HiRISE camera was able to obtain imagery of 3I/ATLAS in its near approach to Mars on October 3, it also remains in question whether the Europa Clipper spacecraft could be activated in time for it to collect any data from the ion tail emanating from 3I/ATLAS.
For any useful data to be obtained, precision measurements will be required to discriminate between the interstellar comet’s ions and those emitted by the Sun. Fortunately, there are several ways to identify ions from comets, including the chemicals they contain, such as those related to water. In contrast, ions originating from the Sun can be expected to exhibit more helium.
Even if Europa Clipper manages to engage the ion tail of 3I/ATLAS with its instruments in operational mode, astronomers will still have to rely on the solar winds flowing strongly enough and in the right direction at the time of the encounter. Even a relatively minor angular deviation could result in the ionic stream coming from 3I/ATLAS missing the spacecraft entirely.
Hope on the Horizon
However, one promising aspect of the idea proposed by Grant and Jones is that 3I/ATLAS will reach its closest approach to the Sun, known as perihelion, on October 29. This happens to occur just prior to the predicted alignment with Europa Clipper’s path, and as the comet’s activity peaks as it nears the Sun, the ionic tail it produces will widen, which increases the chances that it may be able to detect material being ejected from it.
Additionally, the ESA’s Hera spacecraft may also pass through the solar wind streams carrying material from 3I/ATLAS between late October and November 1. However, unlike Europa Clipper, Hera is not equipped with the scientific instruments capable of measuring any charged particles it encounters.
Even if astronomers miss out on this exciting opportunity, the Tailcatcher mission has already succeeded in predicting an ion tail crossing in 2020 that led to the ESA’s Solar Orbiter detecting particles from comet C/2019 Y4. While 3I/ATLAS will likely remain out of range of such spacecraft, Tailcatcher may be able to make additional predictions based on future visits by interstellar objects that visit our solar system.
Additionally, in 2029, the ESA’s Comet Interceptor will take its position in space to await future candidates that may include an interstellar object similar to 3I/ATLAS and its predecessors, which can be targeted for a close flyby that could obtain far more than just detections of ions pulled away from the object by the solar wind.
In the near term, the upcoming alignment between 3I/ATLAS and NASA’s Europa Clipper mission offers a tantalizing advance look at future discoveries astronomers hope to be able to look forward to in the coming years, at the very least.
Or, if NASA can resume operations in time—along with the rest of the U.S. federal government and its workforce—in the days ahead, Europa Clipper may be uniquely positioned for a chance to collect information about the faint chemical fingerprints of another world0
Grant and Jones’ recent paper, “Prospects for the Crossing of Comet 3I/ATLAS’s Ion Tail,” was uploaded to the preprint server arXiv.org on October 15, 2025.
Micah Hanks is the Editor-in-Chief and Co-Founder of The Debrief. A longtime reporter on science, defense, and technology with a focus on space and astronomy, he can be reached atmicah@thedebrief.org. Follow him on X @MicahHanks, and at micahhanks.com.
The interstellar object3I/ATLAS, which is currently flying through our Solar System, continues to present astronomers with new mysteries. Initially, it was thought to be a typical icy comet. However, recent observations have revealed a surprising and rare anomaly—a so-called “anti-tail” pointing toward the Sun. This phenomenon challenges conventional wisdom about comet behavior and fuels scientific debate.
Illustration of comet 3I/ATLAS with an “antitail,” generated by Copilot AI
Mysterious “anti-tail”
Last August, the powerful Keck II telescope in Hawaii targeted 3I/ATLAS when it was 2.5 times farther away than the distance from Earth to the Sun. The data confirmed the presence of cyanide and nickel emissions. However, the strangest thing was that these emissions were produced not only in the usual direction away from the Sun, but also in the opposite direction, i.e., toward it.
Harvard astronomer Avi Loeb, who described the observations in detail, noted that the classic comet tail, formed by dust repelled by solar wind, was virtually invisible in the images taken in normal light. However, this mysterious “anti-tail” is clearly visible.
Image of interstellar object 3I/ATLAS, obtained from a two-meter telescope in the Canary Islands, Spain. The photograph shows a weak jet directed towards the Sun (the vector is marked with a purple line), which extends to a projected distance of about 6,000 km from the core (marked by the intersection of the thin red lines). The direction from the Sun is shown in yellow. Author: M. Serra-Ricart
Nature or illusion?
Scientists offer several possible explanations for this phenomenon.
Optical illusion. Due to the Earth’s unique position in its orbit, the comet’s wide dust tail can appear to “split” from our perspective, creating the impression of two structures diverging in different directions.
Large dust particles. The rapidly rotating nucleus of a comet can eject not only fine dust, but also larger, heavier debris. The solar wind easily repels fine dust, forming a normal tail. However, large particles remain in orbit around the nucleus, distributed both in front of and behind it. This trail of dust, directed toward the Sun, is perceived by us as an “anti-tail.”
As planetary astronomer Michael Bush explains, it doesn’t matter which side of the nucleus the ejection starts from. Small particles fly away from the Sun, while large ones remain in orbit, creating the appearance of two tails.
Object anomaly
For Avi Loeb, the 3I/ATLAS anti-tail remains an anomaly that requires attention. He wonders why experts continue to consider this object a normal comet, ignoring such strange behavior. Loeb even rated 3I/ATLAS at 4 out of 10 on his “Loeb Scale,” which measures the likelihood that an interstellar object could be the product of extraterrestrial technology. This assessment indicates the “increasingly abnormal characteristics” of the object.
Fortunately, science will have another chance to solve this mystery. Soon, 3I/ATLAS will return to Jupiter, providing a unique opportunity for NASA’s Juno and ESA’s Juice spacecraft to conduct closer observations. Perhaps they will provide the definitive answer to the question of the nature of this strange interstellar visitor.
It has been our constant celestial companion for the last 4.5 billion years.
But the moon is no longer the only cosmic body keeping Earth company, experts say.
NASA has confirmed the Earth now has two moons – at least until 2083.
Experts at the Pan–STARRS observatory in Hawaii first announced the presence of a 'quasi–moon', called '2025 PN7', last month.
They explained it is actually an asteroid that has been orbiting the Sun on a similar trajectory to our planet since the 1960s.
The tag–along is just 19 metres (62ft) wide and is the 'smallest and least stable' of the six quasi–moons that have had Earth–like orbits.
Unlike our moon, which can usually been seen with the naked eye, this rock is only visible through good telescopes.
And although it may appear to be orbiting Earth it is not gravitationally bound to our planet and will eventually drift away back into open space.
NASA have confirmed the presence of a quasi–moon, an asteroid called '2025 PN7', that has been tagging along after Earth since the 1960s. This chart shows its orbit around the Sun in relation to Earth
Scientists have been aware of quasi–satellites since 1991 when they first discovered '1991 VG' – which some believed to be an alien probe at the time.
'Over three decades later, it is now widely accepted that such objects are natural and constitute a secondary asteroid belt that occupies the region in which the Earth–moon system orbits around the sun,' researchers behind the newest discovery said.
While it may sound like this neighbour has been 'following' Earth for quite some time, it's relatively short compared to another famous quasi–moon, Kamo'oalewa, which has an Earth–related orbit lasting around 381 years.
Quasi–moons are part of a special category of space objects called Arjunas, that move in sync with our planet's journey around the sun.
2025 PN7 maintains a wide range of distances from Earth – anywhere between around 2.8 million miles (4.5 million km) and 37 million miles (59 million km).
These quasi–moons in Earth–like orbits are 'full of surprises' co–author Carlos de la Fuente Marcos, from the Complutense University of Madrid, said last month.
This new quasi–moon is 'small, faint and visibility windows from Earth are rather unfavourable, so it is not surprising that it went unnoticed for that long,' he explained.
Alongside quasi–moons, the Earth is sometimes joined by 'minimoons' – objects that do orbit our planet but only temporarily.
Only four have ever been discovered, and none are still orbiting Earth.
Experts from The Planetary Society said: 'Quasi–moons and minimoons are pieces of our neighbourhood in space, and they carry information about where they come from. They might originate in the main asteroid belt, from impacts on the Moon, or from the break–up of larger objects on similar orbits — scientists don't know for sure.
'Answering that question, and finding out what these almost–moons are made of, can help researchers learn more about asteroids and how they threaten Earth.'
Like Earth, the Moon has a day side and a night side, which change as the Moon rotates.
The Sun always illuminates half of the Moon while the other half remains dark, but how much we are able to see of that illuminated half changes as the Moon travels through its orbit.
In the Northern Hemisphere, the phases of the moon are:
1. New Moon
This is the invisible phase of the Moon, with the illuminated side of the Moon facing the Sun and the night side facing Earth.
2. Waxing crescent
This silver sliver of a Moon occurs when the illuminated half of the Moon faces mostly away from Earth, with only a tiny portion visible to us from our planet.
3. First Quarter
The Moon is now a quarter of the way through its monthly journey and you see half of its illuminated side.
4. Waxing Gibbous
Now most of the Moon's dayside has come into view, and the Moon appears brighter in the sky.
5. Full Moon
This is as close as we come to seeing the Sun's illumination of the entire day side of the Moon.
6. Waning Gibbous
As the Moon begins its journey back toward the Sun, the opposite side of the Moon now reflects the Moon’s light.
7. Last Quarter
The Moon looks like it’s half illuminated from the perspective of Earth, but really you’re seeing half of the half of the Moon that’s illuminated by the Sun ― or a quarter.
8. Waning Crescent
The Moon is nearly back to the point in its orbit where its dayside directly faces the Sun, and all that we see from our perspective is a thin curve.
A Harvard scientist tracking the interstellar visitor in our solar system has issued a warning about its move behind the sun on Tuesday.
The object, dubbed 3I/ATLAS, will be exactly on the opposite side of the sun relative to Earth, constituting a so-called `solar-conjunction,' tomorrow, which Avi Loeb said would be 'an opportune time for technological action.'
Loeb explained that in space travel, the best time to speed up or slow down a spacecraft is when it's closest to a large object, since firing the engine at that point, known as the Oberth effect, gives the biggest change in speed.
'If 3I/ATLAS is a massive mothership, it will likely continue along its original gravitational path and ultimately exit the Solar system,' the professor shared in a Sunday blog post.
'In that case, the Oberth maneuver might apply to the mini-probes it releases at perihelion towards Solar system planets.'
3I/ATLAS will reach its best window for such Oberth maneuvers just eight days after it slips behind the sun, which will put it the closest to the sun at about 126 million miles away, he added.
However, that conclusion has not stopped Loeb from calling for more data before the case is closed.
A Harvard scientist warned interstellar visitor could perform a 'technological action' eight days after moving behind the sun on Tuesday
'As of now, 3I/ATLAS appears most likely to be a natural comet,' Loeb shared on hist Medium post.
'But the remote possibility of an Oberth maneuver must be considered seriously as a black swan event with a small probability, because of its huge implications for humanity.'
The professor added that he has identified several anomalies that have suggested the object could be of alien origin.
The trajectory of 3I/ATLAS is aligned within five degrees of the ecliptic plane, which is the same plane in which the planets orbit the sun, he shared.
Unlike typical comets, it displayed a sunward jet, or anti-tail, that is not a mere optical illusion caused by viewing angle.
This stream of gas and dust is unusual because comet tails are typically pushed away from the sun by solar radiation and wind.
NASA's Hubble Space Telescope observed a similar phenomenon, capturing an extended glow aimed sunward in late July.
Loeb explained that the glow stretched roughly ten times longer than it was wide, forming what he described as the geometry of a jet directed at the sun, a pattern unlike any known comet.
NASA's James Webb spotted the interstellar visitor in August
The object is also far more massive than previous interstellar visitors, measuring about a million times heavier than 1I/'Oumuamua and a thousand times heavier than 2I/Borisov, while moving even faster than both, he explained.
Loeb also highlighted 3I/ATALS' arrival timing, allowing it to pass within tens of millions of miles of Mars, Venus and Jupiter, yet remain unobservable from Earth at perihelion.
Spectral data further showed that the gas plume surrounding 3I/ATLAS contains much more nickel than iron, similar to industrially produced nickel alloys, with a nickel-to-cyanide ratio far exceeding that of any known comet.
Loeb noted that it also contains only four percent water by mass, a striking contrast to the water-rich makeup of ordinary comets.
Adding to the mystery, 3I/ATLAS exhibits extreme negative polarization, a property never before seen in any comet, and it entered the solar system from a direction within nine degrees of the famous 'Wow! Signal' detected by radio astronomers.
'Gladly, we expect to get data on 3I/ATLAS shortly after perihelion. On November 4, 2025, ESA’s Jupiter Icy Moons Explorer (Juice) will pass within 40 million miles of 3I/ATLAS,' Loeb said.
'If 3I/ATLAS maintains a trajectory shaped by gravity alone, it will come closest to Earth on December 19, 2025, at a distance of 167 million miles.
'On March 16, 2026, 3I/ATLAS will pass within 34 million miles of Jupiter and be observable to sensors in the UV, infrared, and radio bands onboard the Juno spacecraft.'
Investigators say the origin of an object that reportedly collided with a United Airlines aircraft last week, causing damage to its windshield and minor injuries to a pilot, remains unknown.
The harrowing incident occurred last week on Thursday October 16, 2025, at approximately 6:44 AM MDT. The aircraft, a Boeing 737 MAX 8, had been traveling from Denver to Los Angeles when members of the crew reported hearing a loud bang as an object apparently struck the front of the aircraft.
Damage was quickly observed on the right side of the aircraft’s windshield, prompting a diversion to Salt Lake City, where the aircraft safely landed approximately 50 minutes later.
“Unfortunately we have some bad news,” one of the pilots was heard saying over the aircraft intercom according to Heather Ramsey, a passenger aboard the flight at the time of the incident.
“The aircraft has collided with an object,” the pilot told passengers during the announcement.
Ramsey, who shared her account with Fox 11 Los Angeles, said she overheard one of the flight attendants warning other members of the crew to move to the back of the aircraft and to immediately stop in-flight service.
“It was really scary,” Ramsey said, adding that she and other passengers were “holding our breath until the very end.”
The 134 passengers on board the flight were transferred to another aircraft once they reached Salt Lake City, which carried them on to their destination in Los Angeles.
Shortly after the incident, the National Transportation Safety Board (NTSB) issued a statement saying the aircraft had safely made its way Salt Lake City, and that it was collecting information about the incident.
“The NTSB is investigating a cracked windscreen on a Boeing 737-8 during cruise flight near Moab, Utah, Thursday,” a portion of the statement read. “Operating as United flight 1093 from DEN to LAX, airplane diverted safely to SLC.”
The cockpit of the Boeing 737 MAX after the collision.
Source: @aviationbrk
The NTSB also said that the damaged windscreen had been sent to a laboratory where it would be examined to try to determine what the object that struck the aircraft might have been, as speculations ensue about whether debris from a spacecraft reentry, or even a potential meteor impact, could have been involved.
“[P]eople are starting to discuss what this might have been, and the ‘space debris’ (whatever that ends up being) idea is most definitely -not- being dismissed as a possibility,” wrote user JonNYC in a posting about the incident on X.
However, Jonathan McDowell, an astronomer with the Harvard–Smithsonian Center for Astrophysics, told The Debrief in an email that there were “no known reentry matches” that link the incident to any spacecraft falling to Earth at the time.
In an update on his website, McDowell noted that there had been three objects that were successfully tracked during reentry last Thursday, involving a Starlink satellite and a pair of Chinese payloads.
The cockpit of the Boeing 737 MAX after the collision.
Source: @aviationbrk
“All are ruled out,” McDowell wrote, confirming none of these three objects had been near the location where the object struck the United Airlines flight last week.
While space debris has seemingly been ruled out for now regarding the United Airlines incident last week, McDowell has nonetheless raised concerns over the rise in Starlink satellite reentries, which he says are occurring on a daily basis.
The cockpit of the Boeing 737 MAX after the collision.
Source: @aviationbrk
In a statement provided to The Debrief earlier this month, McDowell said that “considering also non-Starlink reentries, there is a risk from reentering debris that I am not comfortable with,” adding that he believes “we should move to banning uncontrolled reentry from large (1 ton plus) space objects.”
Dr. Siamak Hesar, an expert on space debris reentries and CEO of Kayhan Space, similarly told The Debrief that while it is uncommon for space debris reentry to reach flight altitudes, such events are not unheard of, although it requires the debris to be fairly large.
“The material composition also plays a critical role, as objects made from heat-resistant materials have a much greater chance of partially surviving reentry,” Hesar told The Debrief. “Smaller fragments or components made of lighter materials typically disintegrate completely in the upper atmosphere before ever reaching air traffic altitudes.”
Hesar added that the odds of such incidents occurring “are gradually increasing due to the growing number of satellites and spacecraft being launched into orbit.”
“Both commercial and government operators are adding to this population, and most of these objects will eventually reenter Earth’s atmosphere,” Hesar told The Debrief. “As a result, we can expect to see a rising number of reentry events in the coming years.”
While there are no known reentry events that are believed to have coincided with last week’s concerning incident, that still does not rule out the possibility that a meteor could have caused the damage to the aircraft. However, investigators have revealed no evidence supporting this potential source, nor any other possible links to objects falling from space at this time.
Following the incident, images circulated online which reportedly showed the arm of one of the pilots in the cockpit shortly after the collision with the object, revealing several lacerations caused by glass from the broken windshield.
According to a statement issued by United Airlines, the aircraft landed safely “without major injuries reported among passengers or crew,” which apparently confirmed the possibility that minor injuries had occurred during the incident.
Information made available in an incident report at the website of the Aviation Safety Network revealed that the aircraft windshield’s “laminated structure was severely shattered” and that the instrument panel and control surfaces within the cockpit “were contaminated with fine glass particles.”
“Visible impact damage was present on the external surface of the aircraft nose,” the report added.
Fortunately, the aircraft’s multilayer windshield is designed to be capable of remaining functional even in the event of damage being sustained to one or more of its layers.
Currently, while the investigation remains underway, the situation has been further complicated by the ongoing U.S. government shutdown, which has left many NTSB employees, as well as those employed with the Federal Aviation Administration, furloughed.
The NTSB says that it is “gathering radar, weather, [and] flight recorder data” in its ongoing investigation, but no additional details about the incident have been made available at this time.
Micah Hanks is the Editor-in-Chief and Co-Founder of The Debrief. A longtime reporter on science, defense, and technology with a focus on space and astronomy, he can be reached atmicah@thedebrief.org. Follow him on X @MicahHanks, and at micahhanks.com.
Researchers from Johns Hopkins using powerful supercomputer simulations have determined that the most likely explanation for amysterious glow at the center of the Milky Way Galaxy involves collisions of dark matter, resulting in gamma ray emissions that cause the mysterious, diffuse glow.
While the simulations also suggest the phenomenon could be caused by spinning pulsars, the data best support the dark matter theory. If correct, the discovery could offer the first unequivocal proof of dark matter’s existence and provide scientists with a new approach to studying the enigmatic material that makes up a large portion of the universe’s mass.
“Our key new result is that dark matter fits the gamma ray data at least as well as the rival neutron star hypothesis,” the study’s lead author, Joseph Silk, a professor of physics and astronomy at Johns Hopkins and a researcher at the Institut d’Astrophysique de Paris and Sorbonne University, told The Debrief. “We have increased the odds that dark matter has been indirectly detected.”
Since the Fermi satellite, launched in 2008, first discovered the mysterious glow at the center of the Milky Way, several explanations have been proposed to explain its origin. The most promising theories propose that the light comes from either collisions of dark matter particles or from quickly spinning neutron stars.
While the second concept involves proven phenomena, the possibility that the glow is caused by dark matter is particularly intriguing to scientists. This is because dark matter itself is still purely theoretical and lacks definitive proof, as it does not interact with light and therefore cannot be “seen.” Instead, scientists have had to infer dark matter’s existence from its gravitational effects on ordinary matter, while continuing to explore new ways to prove its existence.
In a statement detailing the team‘s research, explained that dark matter “dominates the universe and holds galaxies together,” making its detection a major scientific priority for decades.
“It’s extremely consequential, and we’re desperately thinking all the time of ideas as to how we could detect it,” Professor Silk explained. “Gamma rays, and specifically the excess light we’re observing at the center of our galaxy, could be our first clue.”
In a series of simulations, the professor and an international research team used several supercomputers to create virtual “maps” of locations within the Milky Way that current theories predict dark matter to be located. The team notes that their simulations took into account how the galaxy was formed “for the first time in history,” resulting in an unprecedented level of detail in the final maps.
This critical component of the simulations involved modeling the movement of dark matter during the first billion years of the Milky Way’s existence. The research team said that’s because galactic formation theories predict that many smaller galaxy-like systems entered the Milky Way and became its “building blocks.” During this phase, dark matter particles gravitate toward the center of the galaxy and form clusters. This clustering would result in higher numbers of dark matter collisions, which could, in theory, produce the mysterious glow that still exists today.
According to the team’s statement, when they factored in “more realistic” dark matter collisions, their simulations produced maps that matched actual gamma ray maps previously captured by the Fermi Gamma-ray Space Telescope. The team said the matching simulated and real-world maps “round out a triad of evidence” supporting dark matter collisions as the cause of the mysterious glow at the center of the Milky Way Galaxy.
“Gamma rays coming from dark matter particle collisions would produce the same signal and have the same properties as those observed in the real world,” they explain, “though it’s not definitive proof.”
A second scenario considered in the team’s study involves reinvigorated, old, rapidly spinning neutron stars, known as millisecond pulsars, which could emit the gamma rays. Still, the team notes that the theory is “imperfect,” since their simulations would have to assume there are more millisecond pulsars than have been previously observed in the real world. Conversely, the dark matter collision simulated maps accurately match the real-world observations.
Up next, Professor Silk’s team is preparing follow-up experiments that could determine if the gamma rays causing the mysterious glow at the center of the Milky Way are high-energy rays or low-energy rays. If the experiments show the glow is composed of high-energy rays, the finding would support the millisecond pulsars as its cause. However, Silk notes, if the gamma rays turn out to be low-energy rays caused by dark matter collisions, it would be the first direct evidence for the existence of dark matter ever discovered.
“A clean signal would be a smoking gun, in my opinion,” the professor said.
The team said that figuring out when they will be able to perform these experiments may depend on the completion of the “huge” Cherenkov Telescope Array (CTA). Currently in the construction phase, the array is specifically designed to detect gamma rays of varying energies.
“The Cherenkov Telescope Array under construction in Chile is expected to be the first to provide the necessary sensitivity to test our dark matter hypothesis,” Professor Silk told The Debrief.
While awaiting the observatory’s completion, the team is already working on predictions on potential dark matter clusters within several dwarf galaxies that currently circle the Milky Way. Once the high-res data from Cherenkov is available and compared to the prediction maps, the professor said the team may find the proof of dark matter they are hoping for or support for the millisecond pulsar concept.
“Two possibilities are being considered,” the professor told The Debrief. “One is to look at the Galactic center excess at higher energies. The dark matter hypothesis has no signal because gamma ray energies are limited by the mass of the colliding particles.”
Conversely, the professor said that’s not the case with millisecond pulsars. He also pointed out that the new array will be capable of studying several nearby dwarf galaxies that are “known to consist mostly of dark matter.”
“Detecting the same signal Fermi found for the galactic center would confirm the DM hypothesis,” Silk told The Debrief.
Of course, given the unknown nature of dark matter and the mysterious nature of the galactic glow coming from the center of the Milky Way, the professor conceded that the results may hint at a cause they hadn’t even considered.
“It’s possible we will see the new data and confirm one theory over the other,” Silk explained. “Or maybe we’ll find nothing, in which case it’ll be an even greater mystery to resolve.”
The study, “Fermi-LAT Galactic Center Excess morphology of dark matter in simulations of the Milky Way galaxy,” was published in Physical Review Letters.
Christopher Plain is a Science Fiction and Fantasy novelist and Head Science Writer at The Debrief. Follow and connect with him on X, learn about his books at plainfiction.com, or email him directly at christopher@thedebrief.org.
We associate Halloween with jack-o’-lanterns, carnival costumes, and various creatures and otherworldly beings that, according to legend, can enter our world on the night of October 31 to November 1. But the traditional images of this holiday are found not only on our planet, but also throughout the universe.
In honor of Halloween, the editors at Universe Space Tech have compiled a selection of the most unusual and frightening space photographs, featuring ghosts, witches, jack-o’-lanterns, and even a galaxy-sized emoji.
The Sun is a jack-o’-lantern
The Sun as a jack-o’-lantern. Source: NASA/SDO
This image was captured by the SDO spacecraft on October 8, 2014, and shows active regions on the surface of our star. By a strange coincidence, they are arranged in a pattern that closely resembles a traditional Jack-o’-lantern.
Dead Man’s Hand
The nebula surrounding pulsar PSR B1509-58. Source: NASA/CXC/SAO/P. Slane, et al.
This image was obtained by the Chandra X-ray telescope. It shows a nebula located 17,000 light-years from Earth. At its center is a pulsar, the remnant of a star that exploded about 1,700 years ago. It rotates at a speed of 7 revolutions per second, affecting the surrounding matter and creating various bizarre structures resembling a giant ghostly hand.
Eye of Sauron
The star Fomalhaut and its residual disk (photo by Hubble). Source: NASA/Hubble
This Hubble Space Telescope image shows one of the brightest stars in the night sky, Fomalhaut. It is still very young and is surrounded by a residual disk consisting of dust and various debris. In images taken by space telescopes, the star resembles a giant eye. Because of this, it is sometimes called the Eye of Sauron.
Witch Head Nebula
IC 2118 nebula (“Witch Head Nebula”). Source: NASA/STScI Digitized Sky Survey/Noel Carboni
This bizarre object has the official designation IC 2118, but is much better known by its informal nickname. In fact, the Witch Head Nebula is a reflection nebula in the constellation Eridanus, located thousands of light-years from Earth. It glows with the reflected light of the supergiant star Rigel. Its powerful wind is most likely responsible for the nebula’s unusual shape.
Hole in the sky
NGC 1999 Nebula. Source: NASA and The Hubble Heritage Team (STScI)
Due to its unique appearance, the NGC 1999 nebula has long attracted the attention of astronomers. It was previously thought that the characteristic dark area in its center was actually a cloud of gas and dust so dense that it simply blocked all visible light. However, recent observations have shown that this region is indeed empty. There are no gas and dust clouds or stars hiding inside it. What we see is a true cosmic void.
Creepy emoji
Gravitational lens created by the galaxy cluster SDSS J1038+4849. Source: NASA/ESA
The powerful gravity of the largest structures in the universe can do truly strange things with light: amplify it and bend the direction of photons, leading to the formation of various cosmic mirages. One of them is captured in the photo shown here. The gravity of the SDSS J1038+4849 galaxy cluster has created a giant smiley face, whose smile makes an eerie impression. In reality, its “eyes” are two large elliptical galaxies that are part of the cluster itself, and its “nose” is a smaller galaxy. As for the ‘smile’ and “head,” these are distorted light from more distant galaxies.
Skull and bones
The region of active star formation, NGC 2467. Source: ESO
Appearances can be deceiving. Looking at images of the distant cosmic object NGC 2467, we see something that closely resembles a grinning skull. In reality, what we see is a stellar “maternity ward” that has given birth to many generations of young stars. Interestingly, NGC 2467 is not a single object, but rather several nebulae and groups of stars moving at different speeds. This image is the result of the observer seeing all of its objects in a single line, with their images overlapping each other.
Space virus
The remnant of supernova SN1572. Source: NASA/CXC/Rutgers/J.Warren & J.Hughes et al.
This image is quite capable of evoking memories of the COVID-19 pandemic, as it resembles a photograph of the virus taken with an electron microscope. But in fact, what we see here is not a microcosm, but a macrocosm. What we see is the remnant of a supernova that exploded in the constellation Cassiopeia in 1572. It is a bubble of hot gas rapidly expanding from the site of the explosion. In the process, it collides with the surrounding matter, generating shock waves and accompanied by the formation of high-energy radiation.
Death Star
Mimas. Source: NASA/JPL-Caltech/Space Science Institute
Saturn’s natural satellite Mimas is known for two reasons. First, it is the smallest spherical body in the Solar System. Second, thanks to the Herschel crater, Mimas bears a striking visual resemblance to the famous Death Star. The crater’s diameter is 139 kilometers, which is more than a third of the natural satellite’s diameter. Miraculously, this impact did not destroy the icy moon. Interestingly, Mimas was first photographed by the Voyager spacecraft. They were launched in 1977, just when the first Star Wars movie hit the screens.
Skull Nebula
Planetary nebula NGC 246. Source: ESO
Different stars die in different ways. Some end their existence in a dazzling fireworks display, while others shed their outer layers and turn into white dwarfs. This is exactly what happened to one of the stars at the center of the NGC 246 nebula. The matter ejected by it formed a bizarre shape resembling a skull. Unlike most of the other objects on our list, in this case, the unofficial name quite accurately conveys the essence of what is happening. We see a huge burial shroud enveloping the recently deceased star.
Ghost of Cassiopeia
IC63 nebula. Source: NASA/ESA
Ghosts and spirits are an integral part of the folklore of virtually all peoples of the world. Therefore, it is not surprising that their images can even be found in space. This Hubble Space Telescope image shows the IC 63 nebula, also known as the Ghost. Of course, in reality, this object has nothing to do with the otherworldly realm. IC 63 is a gas and dust cloud in the constellation Cassiopeia that glows under the influence of a neighboring giant star. Over time, this radiation will destroy the cosmic Ghost, scattering its matter throughout the Milky Way.
Scary face
Perseus Cluster. Source: A. Fabian (IoA Cambridge) et al., NASA
This terrifying face seems to be writhing in pain caused by the surrounding fire. Fortunately, no one was hurt in reality when this photograph was taken. In fact, what we see here is an image of the Perseus cluster taken by the Chandra Observatory. The “skull” is formed by fluctuations in X-ray radiation caused by hot gas filling the cluster. The bright spot in the center of the image corresponds to a supermassive black hole located in the center of the Perseus A galaxy.
The interstellar visitor 3I/ATLAS has displayed behavior never before seen in a comet.
In August, the Two-Meter Twin Telescope in the Canary Islands captured an image showing a faint jet extending roughly 3.7 miles from the object's nucleus, pointing toward the sun.
This stream of gas and dust is unusual because comet tails are typically pushed away from the Sun by solar radiation and wind.
Harvard professor Avi Loeb said on Friday: 'The existence of an anti-tail pointed toward the sun is an anomaly that raises two questions: What is the nature of the anti-tail?
'Why are comet experts ignoring this anomaly while insisting that 3I/ATLAS is a familiar comet?'
Weeks earlier, the Hubble Space Telescope observed a similar phenomenon, capturing an extended glow aimed sunward in late July.
Loeb explained that the glow stretched roughly ten times longer than it was wide, forming what he described as the geometry of a jet directed at the Sun, a pattern unlike any known comet.
'Realizing this is as shocking as photographing an animal your family thinks is a street cat, only to see a tail coming out of its forehead,' Loeb said.
In August, the Two-Meter Twin Telescope in the Canary Islands captured an image showing a faint jet extending roughly 3.7 miles from the object's nucleus, pointing toward the sun
He noted that while many specialists hailed the Hubble image as evidence that 3I/ATLAS behaves like a comet, they overlooked the critical detail: the jet points the wrong way.
Both the Hubble and ground-based observations show material moving toward the Sun, contradicting the physics that normally shape comet tails.
Loeb suggests the unusual orientation could indicate the object is ejecting large, heavy particles less affected by sunlight, or that an entirely new type of outgassing mechanism may be at work.
The professor has speculated that 3I/ATLAS could be of extraterrestrial origin, the moment it was identified in July.
Loeb said there is a 30 to 40 percent chance the object 'does not have a fully natural origin,' noting the possibility it is a 'Trojan Horse,' where a technological object masquerades as a comet.
However, the world could soon know the answer when 3I/ATLAS makes its closest approach to the sun on October 29.
The object should 'disintegrate into fragments' if it is a comet.
'When a comet gets close to the sun, solar radiation heats its icy nucleus,' Loeb explained.
Comet 3I/ATLAS streaks across a dense star field in this image captured by a telescope in Chile
'Volatile ices like carbon dioxide, carbon monoxide, or water sublimate directly into gas, carrying away dust and small rocks.
'This process can cause the comet to break apart if the mix of ice and dust cannot withstand the thermal stress.'
The European Space Agency's Jupiter probe will have a front-row seat, capturing the moment it either breaks apart or, as Loeb speculated, 'releases mini-probes as a technological mothership.'
The ESA's Jupiter Icy Moons Explorer (Juice) craft will have a view of the object when it comes 125 million miles from the planet and monitor it through November.
'During November and December, terrestrial observatories will also be able to monitor 3I/ATLAS and check whether it disintegrated like a natural comet or released mini-probes as a technological mothership,' Loeb explained.
While the professor believes there is a possibility it is of alien origin, NASA has long said the object is a natural comet.
The American space agency released images of 3I/ATLAS as it soared past Mars on October 3, showing it as cylindrical-shaped.
Stargazers on social media shared color-enhanced images of the object, which showed the interstellar visitor having a green glow.
Loeb and many other scientists are anticipating the visitor's journey to the sun as it will finally put the mystery to rest.
3I/ATLAS will appear as a fuzzy ball of light in the blackness of space, and if it does disintegrate, the professor said it will break into independent, smaller dots of light
Terra Nova: Naar Mars – De Uitdagingen, De Missie en De Mogelijkheden
Terra Nova: Naar Mars – De Uitdagingen, De Missie en De Mogelijkheden
Inleiding
De verkenning van de ruimte heeft ooit enkel in de verbeelding van sciencefiction-auteurs bestaan. Tegenwoordig zijn we echter getuige van een ware revolutionaire ontwikkeling binnen de ruimtevaart, waarbij de mensheid zich voorbereidt op een Mars-missie. De Rode Planeet, al eeuwenlang een fenomeen van menselijke fascinatie, wordt nu beschouwd als de volgende grote sprong voorwaarts in onze zoektocht naar kennis, overleving en avontuur. Maar hoewel de voordelen en de aantrekkingskracht groot zijn, zitten er ook talloze uitdagingen en problemen in de voorbereiding op en de uitvoering van een dergelijke missie. Deze analyse onderzoekt de belangrijkste problemen, de onderdelen van de missie en de mogelijkheden die Mars ons kan bieden.
De Probleemstelling: De Uitdagingen van een Mars-missie
De reis naar Mars brengt een breed scala aan technische, logistieke en menselijke uitdagingen met zich mee. Het is belangrijk om deze problemen te begrijpen voordat we kunnen spreken over succesvolle missie-uitvoering en de mogelijke voordelen.
Symbolische, artistieke voorstelling van komonisatie van Mars
Technische Uitdagingen
1. Afstand en Communicatie
De afstand tussen Mars en de aarde bedraagt gemiddeld ongeveer 225 miljoen kilometer, wat leidt tot aanzienlijke communicatievertragingen. Een signaal door de ruimte reizen kost tussen de 13 en 24 minuten, afhankelijk van de positie van beide planeten. Hierdoor is het onmogelijk om in real-time te communiceren, wat betekent dat de missie volledig autonoom moet opereren. De astronauten en systemen moeten zelfstandig kunnen handelen zonder voortdurende directe controle vanaf aarde. Dit vereist geavanceerde technologieën voor automatische navigatie, besluitvorming en probleemoplossing. Daarnaast moeten er robuuste communicatie-infrastructuren ontwikkeld worden, zoals satellietnetwerken en redundante systemen, om continu contact en datatransmissie te waarborgen. Het ontwerp van deze systemen moet flexibel en betrouwbaar zijn, om te functioneren in de uitdagende omstandigheden van Mars en onder de tijdsdruk van de enorme afstand.
2. Luchtdruk en Atmosfeer
De atmosfeer op Mars is extreem vijandig voor menselijke aanwezigheid. De CO₂-rijke atmosfeer (meer dan 95%) biedt geen ademlucht en zorgt voor gevaarlijke omstandigheden zonder speciale apparatuur. De luchtdruk op Mars is slechts circa 0,6 procent van die op aarde, wat betekent dat ademhalen zonder hulp in de open lucht onmogelijk is. Daarom moeten levensondersteunende systemen worden ontwikkeld die zuurstof genereren, zoals elektrolyse van water of terugwinningstechnologieën. Voor de bewoning zijn duurzame habitats nodig die zowel luchtdruk als temperatuur reguleren, en beschermen tegen de atmosfeer, die gevaarlijke stoffen bevat. Daarnaast wordt gewerkt aan draagbare ademhalingsapparatuur en koelsystemen die astronauten veilig houden. Het ontwerp van de infrastructuur moet eveneens rekening houden met het uitzetten en krimpen van materialen door de omstandigheden, om structurele schade te voorkomen.
3. Extreme Temperatuurverschillen
Mars kent enorme temperatuurverschillen: in de poolgebieden kan het in de winter dalen tot ongeveer -125°C, terwijl het overdag aan de evenaar tot +20°C kan worden. Overgang van dag tot nacht en de extreme temperaturen vereisen dat alles, van voertuigen tot habitats, bestand moet zijn tegen deze fluctuerende omstandigheden. Speciale isolatiematerialen en verwarmingssystemen zijn essentieel om astronauten en apparatuur warm te houden. Daarnaast moeten de voertuigen en infrastructuren bestand zijn tegen de omgevingsstress van vorst en hitte, inclusief mogelijke vorstvorming en structurele uitzetting. Het ontwerpen hiervan vergt innovatieve oplossingen voor warmte-isolatie, thermisch management en materiaalkeuze. Daarnaast worden metalen en polymeren gebruikt die flexibel blijven en bestand zijn tegen de extreme temperatuurschommelingen, zodat de missie veilig en operationeel kan blijven ondanks de uitdagende klimatologische omstandigheden.
4. Straling
De afwezigheid van een magnetisch veld en een dichte atmosfeer maken Mars zeer gevoelig voor kosmische straling en zonnepanelen. De verhoogde niveaus van straling vormen een enorm gezondheidsrisico voor astronauten, waaronder een verhoogde kans op kanker, genetische mutaties en andere ziekten. Om dit gevaar te beperken, moeten habitats en beschermingsmaterialen worden ontwikkeld die stralingsbestendig zijn. Bijvoorbeeld, het gebruik van dikker aardekorraal, water of speciale stralingsabsorptiematerialen in muren vermindert de blootstelling aanzienlijk. Daarnaast worden er ondergrondse habitats overwogen, die bescherming bieden door onder het oppervlak te bouwen. Astronauten krijgen ook persoonlijke stralingsmonitors en beschermende kleding. Het veiligheidsbeleid moet strak zijn en continu worden aangepast op basis van de stralingsniveaus. Kortsamengevat, bescherming tegen straling blijft een van de grootste technische en medische uitdagingen bij het vestigen op Mars.
Logistieke Uitdagingen
1. Voorraadbeheer
Bij een bemande Marsmissie is voorraadbeheer een cruciale factor voor het succes. De reis en de verblijfperiode opMars stellen hoge eisen aan de planning van levensmiddelen, water, brandstof en andere essentiële benodigdheden. Vanwege de enorme afstand en de lange duur van de missie (meerdere maanden tot jaren), is het onbegonnen werk om alles vanaf de aarde mee te nemen. Daarom moeten wetenschappers en ingenieurs systemen ontwikkelen die het mogelijk maken om op een efficiënte en duurzame wijze voorraden te beheren. Dit omvat onder andere het gebruik van geavanceerde verpakkingsmaterialen die voedsel en water langer houdbaar maken, en slimme opslagmethoden die temperatuur, vochtigheid en isolatie optimaliseren.
Een belangrijk aspect van voorraadbeheer is het besparen van ruimte en gewicht. Dit wordt gedaan door middel van het gebruik van stabiele, compact te bewaren producten en het implementeren van modulaire opslagunits die ruimte optimaal benutten. Daarnaast wordt er gezocht naar technologieën voor hergebruik en recycling. Bijvoorbeeld, afvalwater uit sanitaire voorzieningen en transpiraat kan worden gerecycled voor irrigatie of zelfs voor het maken van drinkwater via omgekeerde osmose-systemen. Verder wordt er actief gewerkt aan in situ resource utilization (ISRU), het gebruik van lokale hulpbronnen op Mars, zoals ijs voor waterproductie of kooldioxide uit de atmosfeer voor het genereren van zuurstof en brandstof.
2. Aarding en Herbruikbaarheid
Een andere grote logistieke uitdaging is het terughalen en hergebruik van materialen die op Mars beschikbaar zijn. Dit betekent dat het niet alleen gaat om het oppompen van water uit ijslagen onder het maanoppervlak, maar ook om het technisch mogelijk maken van het extraheren van zuurstof uit de atmosphere of het recyclen van metalen en kunststoffen die worden afgedankt.
Het zelfvoorzienend maken van een Marsbasis vereist geavanceerde technologieën voor resource-extractie en verwerking. Zo werken verschillende projecten aan systemen die in staat zijn om water te winnen uit ijs, dat vervolgens kan worden opgespoten en hergebruikt voor drinkwater en als oplosmiddel in de productieprocessen. Het gebruik van lokale hulpbronnen vermindert niet alleen de kosten en logistieke afhankelijkheid van de aarde, maar maakt de missie ook veel duurzamer en veiliger.
Bovendien is het herbruikbaar maken van materialen van groot belang voor duurzame levensonderhoud. Bijvoorbeeld, 3D-printtechnologieën kunnen worden ingezet voor het produceren van reserveonderdelen of gereedschappen op de oppervlakte, waardoor de voorraad van alles wat wordt meegebracht op aarde, aanzienlijk kan worden verminderd. Het is dus essentieel dat de technologieën voor resource-exploitatie en recycling robuust, betrouwbaar en efficiënt zijn, zodat de bemanning niet afhankelijk wordt van onbetaalbare of moeilijk te verkrijgen voorraden van buitenaf.
Kortom, logistieke uitdagingen in een Marsmissie vragen om innovatieve, integrale oplossingen gebaseerd op geavanceerde technologieën voor voorraadbeheer, resource-exploitatie en recycling. Alleen door een strategische en slimme aanpak kunnen we de lange termijn zelfvoorzienendheid en veiligheid van toekomstige Marsbewoners waarborgen.
Menselijke Uitdagingen
1. Psychologie en Gezondheid
Het verblijf in de ruimte, vooral tijdens langeafstandsmissies, brengt aanzienlijke psychologische uitdagingen met zich mee die de mentale stabiliteit van astronauten ernstig kunnen beïnvloeden. De lange periodes van isolement en beperkte sociale interactie met een klein team zorgen voor een gevoel van eenzaamheid en isolatie, wat kan leiden tot depressieve gevoelens en angststoestanden. Daarnaast moeten astronauten omgaan met voortdurende stress die voortkomt uit technische storingen, gevaarlijke situaties en het feit dat hulp van de aarde niet altijd snel of gemakkelijk verkrijgbaar is.
Een andere belangrijke factor is de angst voor mislukking of gevaar, vooral wanneer er zich problemen voordoen die directe actie vereisen. Dit kan leiden tot verhoogde spanning en emotionele drain. Communicatie met het thuisfront speelt hierbij een cruciale rol: het gebrek aan directe, emotionele ondersteuning kan het gevoel van eenzaamheid versterken. Het is daarom essentieel om geavanceerde psychologische ondersteuning en regelmatige counselling-sessies te bieden, zowel via videoconferenties als via virtuele realiteit-ervaringen die een gevoel van nabijheid en verbinding creëren.
Daarnaast moet er voorzien worden in entertainment- en ontspanningsmogelijkheden om stress te verminderen en mentaal welzijn te bevorderen. Dit kan variëren van virtual reality-ervaringen en videospellen tot muzikale en artistieke activiteiten die afleiding en creativiteit stimuleren. Training in stressmanagement, meditatie en mindfulness kan ook helpen bij het handhaven van de emotionele balans. Al deze maatregelen dragen bij aan het voorkomen van langdurige psychische problemen en zorgen dat astronauten mentaal sterk blijven gedurende het hele missieproces.
2. Fysiologische Veranderingen
De omstandigheden in de ruimte, zoals langdurige gewichtloosheid en microzwaartekracht, veroorzaken ingrijpende fysiologische veranderingen bij astronauten. Een van de meest prominente problemen is spieratrofie, waarbij de spieren — vooral die gebruikt voor lopen en tillen — in kracht en omvang afnemen door het ontbreken van zwaartekrachtseisen. Dit kan het lichaamsvermogen ernstig verminderen en brengt operationele risico’s met zich mee. Hetzelfde geldt voor botontkalking; zonder de belasting die zwaartekracht normaal gesproken op botweefsel uitoefent, neemt de botdichtheid af, wat het risico op fracturen verhoogt.
Daarnaast kunnen cardiovasculaire systemen worden aangetast doordat het hart in gewichtloze omstandigheden minder hoeft te pompen, wat kan leiden tot een afname in cardiovasculaire capaciteit. Bovendien passen andere organen zich aan aan de microzwaartekracht, wat kan leiden tot veranderingen in de bloeddruk, de bloedsamenstelling en het evenwicht van lichaamsvocht.
Om deze fysiologische effecten te beperken, worden uitgebreide oefenprogramma’s ontwikkeld die gericht zijn op kracht en uithoudingsvermogen. Speciale apparatuur zoals loopbanden, krachtmachines en gewichtloosheidstrainers maken het mogelijk om weerstandsoefeningen uit te voeren. Medicatie zoals botversterkingsmiddelen en vitamines kunnen verdere botontkalking voorkomen. Fysiotherapie en regelmatige medische controles maken eveneens deel uit van het gezondheidsbeheer, zodat problemen tijdig worden geïdentificeerd en aangepakt. Het handhaven van de fysieke gezondheid van astronauten is essentieel voor het succes van de missie en voor hun lange termijn welzijn na terugkeer op aarde.
De Missie: Organisatie en Uitvoering
Voor de succesvolle humanitaire exploratie van Mars moeten de plannen ontworpen en uitgevoerd worden met de grootste precisie. Verschillende ruimtevaartorganisaties en private ondernemingen werken hard aan het ontwikkelen van een overzichtelijke, haalbare missie.
Doelstellingen van de Missie
1. Wetenschappelijke Onderzoek
Het primaire doel van de missie is het uitvoeren van uitgebreid wetenschappelijk onderzoek naar Mars’ geologie, klimaat en mogelijke biosignaturen. Door middel van geologische monsters en remote sensing technieken willen wetenschappers ontdekken wat de geschiedenis van de planeet is en of er ooit een levensvatbare omgeving heeft bestaan. Het bestuderen van de geologische lagen, mineralogische composities en ondergrondse structuur helpt bij het reconstrueren van het klimatische verleden van Mars en het identificeren van plaatsen waar water ooit aanwezig was of nog steeds mogelijk is. Daarnaast wordt gezocht naar biosignaturen, sporen van mogelijk oud leven, zoals microfossielen of chemische markers die door biologie kunnen worden verklaard. Het vergaren van deze informatie is cruciaal om de vraag te beantwoorden of Mars ooit levend is geweest en onder welke omstandigheden dat mogelijk was. Deze inzichten bieden niet alleen wetenschappelijke kennis, maar versterken ook ons begrip van de algemene omstandigheden waarin leven overal in het universum kan ontstaan. Het uitgebreide wetenschappelijke onderzoek vormt daardoor de fundering voor verdere exploratie en toekomstige menselijke aanwezigheid, en helpt om de planeet beter te kunnen beschermen en duurzaam te bestuderen.
2. Planetair Verkennen
Naast wetenschappelijke doeleinden wordt de missie ingezet om Mars’ natuurlijke hulpbronnen te inspecteren en te testen of technologieën die voor toekomstige bewoning en exploitatie noodzakelijk zijn, haalbaar en efficiënt werken. Het in kaart brengen van waterbronnen, ijslagen en minerale afzettingen is essentieel voor het plannen van langdurige bemande missies en potentiële kolonisaties. Het gebruik van in situ resource utilization (ISRU) technologische systemen stelt astronauten in staat om zelf meststoffen, water of brandstof te produceren uit Mars’ eigen hulpbronnen. Dit verlaagt de afhankelijkheid van resupply vanuit aarde en bevordert duurzaamheid. Daarnaast wordt de operationele betrouwbaarheid van habitatbouwsystemen, robotica en transporttechnologieën getest om te bepalen wat onder de vele omstandigheden op Mars effectief en betrouwbaar is. Het verkennen van de planeet dient ook om potentiële gevaren en uitdagingen tijdig te identificeren, zoals extreme temperaturen, stofstormen en stralingsniveaus. Deze informatie is essentieel voor het veilig en succesvol uitvoeren van toekomstige menselijke reizen en het opzetten van infrastructuur op Mars, waarmee een stevige basis wordt gelegd voor verdere menselijke aanwezigheid op de planeet.
3. Menselijke Aanwezigheid
Het opzetten van een duurzame menselijke aanwezigheid op Mars vormt een van de kernpunten van de missie. Het doel is niet alleen tijdelijke verkenning, maar het vestigen van een zelfvoorzienende nederzetting die op lange termijn kan bestaan. Dit omvat de ontwikkeling en tests van habitatmodules, levensondersteunende systemen en het beheer van voedsel- en waterbronnen. Een duurzame nederzetting vraagt om technologieën voor hernieuwbare energie, zoals zonne-energie en mogelijk nucleaire krachtbronnen, zodat de bewoners niet afhankelijk zijn van externe voorraad. Daarnaast wordt onderzoek gedaan naar het overleven onder de Martiaanse omstandigheden, zoals het omgaan met straling, lagere zwaartekracht en psychologische factoren waar de mens mee te maken krijgt tijdens langdurige expeditie. Een ander belangrijk aspect is het mogelijk initiëren van mijnbouwactiviteiten voor essentiële materialen, wat de zelfvoorzienendheid verder vergroot en de economische haalbaarheid van een permanent menselijk onderkomen op Mars mogelijk maakt. Door het vestigen van een menselijke aanwezigheid wil de missie de eerste stappen zetten naar een nieuwe samenleving op een andere planeet en de mensheid voorbereiden op verdere interplanetaire exploratie.
Project Redsun: NASA's Secret Manned Missions to Mars
How Close Is The U.S. To Sending Humans To Mars?
Missie naar Mars: Twee Fasen van de Missie
De verkenning van Mars vormt een van de meest ambitieuze doelen binnen de ruimtevaart. Het opzetten van een menselijke aanwezigheid op de rode planeet vereist uitgebreide voorbereiding, technologische innovatie en langdurige planning. De missie kan in twee hoofdfasen worden onderverdeeld: de voorbereidende en lanceringsfase, en de daadwerkelijke verkenning en vestiging op Mars. Hieronder worden deze twee fasen uitgebreid beschreven, inclusief de verschillende activiteiten, uitdagingen en doelstellingen die elke fase kenmerkt.
1. Voorbereiding en Lancering
a. Technologische ontwikkeling en testen
De eerste fase van de missie draait grotendeels om het ontwikkelen en testen van de benodigde technologieën. Dit omvat onder andere de bouw en verfijning van draagraketten die krachtig genoeg moeten zijn om een ruimtereis van meerdere maanden te ondersteunen. De draagraketten vormen het fundament voor het transport van alle voorbereidende modules, voertuigen en materialen die nodig zijn om een menselijke aanwezigheid op Mars mogelijk te maken.
Daarnaast worden landingsmodules en habitats ontworpen, met speciale aandacht voor veiligheid, duurzaamheid, en het functioneren onder de Mars-omstandigheden. Vorig jaar hebben verschillende ruimtevaartorganisaties en bedrijven zoals NASA, ESA, SpaceX en anderen prototypes getest onder vergelijkbare omstandigheden, om het landingsproces en de kritieke systemen te optimaliseren.
b. Testvluchten en simulaties
In deze fase worden uitgebreide simulaties uitgevoerd en testvluchten georganiseerd. Deze tests richten zich op het bevestigen van de functionaliteit van de technologieën, zoals de werking van de landingstechnologie, de terugkeer- en ondersteuningssystemen, en de levensondersteuningssystemen. Ook wordt de betrouwbaarheid van nieuwe materialen en fabricagetechnieken gecontroleerd.
Veel van deze tests vinden plaats op aarde, in speciale faciliteiten die de omstandigheden van Mars nabootsen, zoals stralingsniveau, bodemtype en atmosfeer. Sommige experimenten omvatten het gebruik van robots en onbemande verkenningsvoertuigen die de terreinstructuur en de beschikbare hulpbronnen beoordelen.
c. Planning en internationale samenwerking
De voorbereiding omvat ook een uitgebreide planning en coördinatie tussen verschillende dus internationale partners en commerciële partijen. Elke organisatie heeft haar eigen rol en verantwoordelijkheden, variërend van het lanceren van draagraketten tot het bouwen van habitats en het voorzien in de logistieke behoeften.
Deze samenwerking zorgt voor een gecoördineerde aanpak en het delen van kennis. Daarnaast wordt rekening gehouden met het oplopen van kosten en de logistieke complexiteit van de missie. Een belangrijke prioriteit is het afstemmen van tijdschema’s, risicoanalyses en het opstellen van back-up plannen voor mogelijke tegenslagen.
d. De lancering van de ‘Mars Transit Vehicle’
De daadwerkelijke lancering wordt gepland zodra alle systemen volledig getest en klaar zijn. De ‘Mars Transit Vehicle’, een speciaal gebouwde ruimtetuig dat dient als drager voor de crew en voortplantingssystemen, wordt gelanceerd zodra de lanceerpunten beschikbaar zijn. Deze grote, krachtige raket brengt de missie in een baan om de aarde en zet het voertuig in een veilige traject naar Mars.
Tijdens de voorbereidingsfase wordt ook gezorgd dat alles gereed is om de omstandigheden tijdens de reis te overleven, zoals voeding, medische voorzieningen, en communicatiesystemen. Het inrichten van de logistieke keten en het trainen van de bemanning speelt ook een cruciale rol in deze voorbereidende fase.
2. De Reis
a. Reisduur en technologische uitdagingen
De reis naar Mars varieert afhankelijk van de technologie en de planetenbanen, maar duurt meestal tussen 6 en 9 maanden. De grote uitdaging hierbij is om de bemanning en systemen veilig en gezond te houden gedurende deze periode.
Gebruikmakend van de nieuwste voortstuwingstechnologieën, zoals nucleaire aandrijving of geavanceerde chemische motoren, wordt geprobeerd de reis zo kort mogelijk te maken, wat zorgt voor minder ruis- en stralingsbelasting. Verder moet de reis voorzien in een stabiele omgeving die medische controles, rustperioden en communicatie met de aarde mogelijk maakt.
b. In situ hulpbronnengebruik (UH)
Tijdens de reis worden ook voorbereidingen getroffen voor het gebruik van in situ hulpbronnen (In Situ Resource Utilization, ISRU). Dit betekent dat de bemanning en systemen al tijdens de reis materialen en hulpbronnen kunnen verzamelen en verwerken, zoals het omzetten van marsbodem en -ijs in drinkwater, zuurstof en zelfs brandstof. Dit vermindert de afhankelijkheid van vooropgezette voorraden en vergemakkelijkt de toekomstige, permanente vestiging.
c. Gezondheid en welzijn van de bemanning
Het behouden van de fysieke en mentale gezondheid van de bemanning is essentieel. Daarom worden uitgebreide medische controles en routines gedurende de reis gehandhaafd, inclusief oefenprogramma’s en communicatie met familie en medische teams op aarde. Psychologische ondersteuning, rustperioden, en entertainment zijn belangrijke elementen om de motivatie en het welzijn van de crew op peil te houden.
3. Aankomst en Landing
a. Keuze van landingsplaatsen
Eenmaal aangekomen bij Mars wordt de landing uitgevoerd op vooraf geselecteerde locaties, afhankelijk van de wetenschappelijke en operationele doelen. Hierbij wordt gekeken naar de aanwezigheid van hulpbronnen zoals ijs, mineraalrijke bodem en veilige terreinstructuur. Sommige locaties, zoals de krater Gale of de vlakte van Utopia Planitia, worden vaak genoemd als potentiële landingsplaatsen.
Het wordt cruciaal dat de landingssystemen betrouwbaar en flexibel zijn, omdat de Mars-omgeving onvoorspelbaar kan zijn. Hiervoor worden speciale landingsmodules en parachutes ontwikkeld die gecontroleerde landingen mogelijk maken.
b. Veiligheid en habitattechnologie
Omdat de omgeving op Mars bijzonder gevaarlijk is, spelen veilige landingssystemen en robuuste habitats een centrale rol. De habitats moeten bestand zijn tegen stralings, extreme temperaturen en de dunne atmosfeer. Modulariteit en eenvoudige aanpassing vormen de kern van het ontwerp, zodat toekomstige uitbreidingen en reparaties mogelijk zijn.
4. Op Mars
a. Wetenschappelijk en onderzoeksactiviteiten
Na aankomst begint de werkfase op Mars. Het eerste aandachtspunt is het opzetten en activeren van installaties voor wetenschappelijk onderzoek en grondverkenning. Robuuste robots en extravehiculair werk (EVA) maken het mogelijk om de omgeving te bestuderen en in kaart te brengen, evenals hulpbronnen te verzamelen en te verwerken.
b. Omgaan met hulpbronnen en bouwactiviteiten
Het benutten van lokale hulpbronnen is de basis voor het bestaan op Mars. Dit wordt gerealiseerd door het opzetten van systemen voor het extraheren van water uit ijslagen, het produceren van zuurstof uit de atmosfeer en het fabriceren van brandstoffen. Op termijn kunnen semi-permanente en zelfs permanente structuren worden gebouwd, waarbij modulaire habitats worden uitgebreid met extra modules voor onderzoeken, landbouw en leefruimte.
c. Extravehiculair werk en verkenning
EVA’s bieden de mogelijkheid voor de astronauten om de omgeving te verkennen, nieuwe locaties te beoordelen en hulpbronnen te verzamelen. Het draagbare en geautomatiseerde verkenningsmateriaal wordt uitgebreid om lange expedities mogelijk te maken.
5. Terugkeer en Continuïteit
a. Afsluiten en terugreis
Na een afgesproken periode op Mars wordt de missie voorbereid op de terugreis. Hierbij worden alle benodigde materialen en gegevens veiliggesteld en voorbereid voor de terugkeer naar de aarde. De astronauten worden geëvalueerd en opnieuw klaargemaakt voor de reis.
b. Opvolging en ontwikkeling van permanente aanwezigheid
Het uiteindelijke doel is niet slechts een korte verkenning, maar het vestigen van een levensvatbare, permanente aanwezigheid op Mars. Door het verzamelen van wetenschappelijke data en het ontwikkelen van duurzame systemen wordt gewerkt aan het opzetten van een basis voor langetermijngebruik. Dit helpt niet alleen bij verdere verkenningen, maar ook bij het voorbereiden van toekomstige menselijke kolonies.
Samenvatting
De missie naar Mars is opgebouwd uit twee grote fasen: een uitgebreide voorbereiding en lancering, gevolgd door een langdurige reis en verblijf op de planeet zelf. Deze missie vereist niet alleen natuurwetenschappelijke en technologische doorbraken, maar ook internationale samenwerking, logistiek, en innovatieve benaderingen van hulpbronnengebruik. De succesvolle uitvoering van deze twee fasen kan de mensheid brengen tot een nieuwe grens in de ruimteverkenning en het mogelijk maken van een blijvende menselijke aanwezigheid op Mars.
De Mogelijkheden: Wat kan Mars ons bieden?
De verkenning en kolonisatie van Mars zijn niet alleen een grote technologische uitdaging, maar bieden ook enorme kansen op verschillende gebieden.
Wetenschappelijke Mogelijkheden
1. Levenswetenschappen en Astrobiologie Mars biedt een unieke kans om de vraag te beantwoorden of er ooit leven heeft bestaan buiten de aarde. Door de analyse van rotsen, mineralen en chemische samenstellingen kunnen wetenschappers aanwijzingen vinden die erop wijzen dat water ooit vloeibaar aanwezig was of dat micro-organismen mogelijk hebben kunnen overleven. Het bestuderen van de geologische en atmosferische geschiedenis van Mars helpt ons beter te begrijpen in hoeverre de omstandigheden ooit geschikt waren voor het ontstaan van leven. Atmosferische modellen kunnen laten zien hoe het klimaat op Mars in de loop van de tijd is veranderd, wat mogelijk wijst op periodes van habitabiliteit. Daarnaast kunnen monsters die teruggebracht worden naar aard worden onderzocht op sporen van organische verbindingen, wat belangrijke inzichten kan geven over de universele verschijnselen die mogelijk tot leven leiden. Deze wetenschappelijke zoektocht helpt niet alleen om de geschiedenis van Mars te ontrafelen, maar kan ook antwoorden bieden op de universele vraag of wij niet de enigen zijn in het heelal. Het ontdekken van eventueel fossiele micro-organismen zou een revolutie betekenen in de biologische wetenschappen en onze kijk op het leven in het universum aanzienlijk veranderen.
2. Geologische en Klimaatwetenschap Het onderzoeken van de geologie van Mars, zoals stratificaties, vulkanische formaties en sedimentlagen, geeft inzicht in de geologische geschiedenis van de planeet. Door het bestuderen van rotsformaties kunnen wetenschappers de processen achter de vorming van de planeet, zoals vulkanisme, tectoniek en impactbanen, reconstrueren. Daarnaast speelt het klimaatgebeurtenis een centrale rol: het begrijpen van de veranderingen in atmosfeer en temperatuur door de tijd heen helpt ons te ontdekken waarom Mars nu zo droog en ijzig is. Door klimaatmodellen te gebruiken, kunnen we de periodes identificeren waarin de planeet mogelijk een milder klimaat had, vergelijkbaar met dat van de Aarde. Deze kennis kan niet alleen de evolutie van Mars verklaren, maar geeft ook inzichten in de aardse geschiedenis, zoals de factoren die het klimaat in de loop der tijd hebben beïnvloed. Verder helpt dit onderzoek bij het voorspellen van toekomstige klimaatveranderingen op Aarde en het ontwikkelen van strategieën om Extreme weer en klimaatwijzigingen beter aan te pakken.
Technologische Innovaties
Het plannen en uitvoeren van een missie naar Mars stimuleert voortdurende technologische innovaties met enorme toepasbaarheid op aarde. Voor dergelijke missies worden geavanceerde systemen ontwikkeld op het gebied van energiebeheer, zoals duurzame energiebronnen en efficiënte energieopslag. Onderzoek naar waterrecyclingtechnieken voor de verrijking van middelen op Mars leidt tot verbeteringen in waterbeheer en -hergebruik in aride en afgelegen regio’s op aard. Kunstmatige intelligentie en robotica worden ingezet voor het besturen van onduidelijke en gevaarlijke omgevingen, wat resulteert in autonome systemen die ook in de medische sector, landbouw en infrastructuur kunnen worden toegepast. Daarnaast schakelen onderzoekers zich in robotische technologieën die menselijke missies ondersteunen en uiteindelijk zelfvoorziening op Mars mogelijk maken. Deze technologische vooruitgang zorgt voor duurzame ontwikkeling en innovaties die ten goede komen aan diverse sectoren op aarde, zoals de energietransitie, gezondheidszorg en landbouw. Bovendien dragen de vernieuwde technische kennis en vaardigheden bij aan de economische kracht en strategische autonomie van landen die investeren in ruimtevaart.
Economische en Strategische Voordelen
Het langdurig mennen van hulpbronnen op Mars – zoals waterijs, mineralen en mogelijk andere energiebronnen – kan een omzetgevende sector worden die nieuwe industrieën stimuleert. Water op Mars kan bijvoorbeeld worden omgezet in drinkwater, brandstof en zuurstof, essentieel voor het voortzetten van toekomstige ruimtemissies én voor de aardse industrieën. Mineralen die op Mars gevonden worden, kunnen nieuwe markten openen voor robotische mijnbouw en materiaalproductie. Daarnaast kan de aanwezigheid op Mars strategisch belangrijk zijn voor geopolitieke macht en invloed, vooral als landen exclusieve toegang en controle krijgen tot buitenaardse hulpbronnen. Dit leidt tot nieuwe geopolitieke machtsverhoudingen en economische allianties, waarbij ruimtevaart een belangrijke rol speelt in het wereldwijde concurrentiespel. Het ontwikkelen van infrastructuur op Mars, zoals basisinstallaties en communicatie-netwerken, stimuleert bovendien de creatie van hoogtechnologische banen en economische groei in de betrokken landen en private bedrijven. De commerciële ruimtevaartsector profiteert hierdoor enorm, wat een aanzet is tot de verdere ontwikkeling van een buitenaardse economie die op termijn nieuwe markten en zakelijke kansen creëert.
Duurzame Bewoning en Missies op de Aarde
De ervaringen en innovaties opgedaan tijdens de plannen en uitvoeringen van bemande missies naar Mars kunnen ook waardevolle toepassingen hebben voor de bescherming en verduurzaming van onze planeet. Technologieën ontwikkeld voor het overleven in extreme omstandigheden, zoals isolatie, water- en voedselvoorziening en energiebeheer, kunnen worden geïmplementeerd in gebieden op aarde die geconfronteerd worden met droogte, kou en voedseltekorten. Bijvoorbeeld, systemen die water efficiënt recyclen en energie besparen kunnen in droge gebieden helpen bij het ontwikkelen van duurzame leefomgevingen. De kennis over het omgaan met de uitdagingen van een gesloten ecosysteem op Mars kan leiden tot nieuwe technieken voor het ontwerpen van autonome en zelfvoorzienende stadsdelen op Aarde. Bovendien stimuleert de marstechnologie een cultuur van duurzame innovatie, waarin eco-efficiëntie en milieubescherming centraal staan. Deze kennis en technologie kunnen ook helpen bij het bestrijden van klimaatverandering door het ontwikkelen van nieuwe, efficiënte energie- en watermanagementsystemen en het verbeteren van rampenbestrijdingstechnologieën. Zo draagt de ruimtewetenschap bij aan het creëren van een toekomstbestendige en veerkrachtige aarde.
Toekomstperspectieven en Conclusie
De ambitie om naar Mars te reizen en er menselijke bewoning tot stand te brengen, is een ambitieuze en uitdagende onderneming die innovatieve technologie, internationale samenwerking en lange termijn planning vereist. De obstakels die voor ons liggen, variëren van technische en logistieke problemen tot menselijke en psychologische wortels.
Ondanks deze uitdagingen opent de missie naar Mars ongekende mogelijkheden op het gebied van wetenschap, technologie, economie en menselijke ontwikkeling. Het is niet alleen een zoektocht naar nieuwe werelden, maar ook een spiegel voor onze eigen evolutie, onze veerkracht en onze vaardigheden om samen complexe doelen te behalen.
In de toekomst zou Mars niet slechts een bestemming zijn voor wetenschappelijke ontdekking, maar mogelijk een tweede thuis voor de mensheid. De inspanningen die nu gedaan worden, vormen de basis voor een nieuwe epoch van exploratie en innovatie — een die ons kan leiden naar een bredere, meer verbonden en veerkrachtige mensheid.
The Full Guide to Colonizing Mars | Space Documentary [4K]
Eindwoord
De reis naar Mars symboliseert onze voortdurende drang om te ontdekken, te verbeteren en te overwinnen. Hoewel we geconfronteerd worden met enorme problemen en risico’s, bieden de technologische mogelijkheden en de collectieve kracht van menselijke aspiraties een hoopvolle toekomst. Door met vastberadenheid, vernuft en samenwerking de uitdagingen te overwinnen, kunnen we de Rode Planeet betreden en misschien wel, op termijn, een nieuwe wereld voor de mensheid creëren.
The new James Webb Space Telescope (JWST) images, published Sept. 22 in the journal Astronomy & Astrophysics, have also revealed the clearest views yet of the massive counter-jet that's ricocheting through space in the opposite direction, the study authors found.
The jet of subatomic particles spewing out of the supermassive black hole at the center of the gigantic galaxy Messier 87 (M87), located 54 million light-years from Earth, is catapulting through space at almost the speed of light. Previous radio wavelength observations from the Very Large Array (VLA) in New Mexico revealed that the jet is shaped like a double-helix and is about 8,000 light years long.
Researchers at Johns Hopkins University have reported an important discovery related to dark matter. The mysterious diffuse glow of gamma rays near the center of the Milky Way may be caused by collisions between its particles.
Dark matter is a hypothetical form of matter that is believed to not participate in electromagnetic interactions and accounts for about a quarter of the mass-energy of the Universe. Since dark matter is a fundamental building block of the cosmos, studying it is important for understanding how the structure of galaxy clusters that we observe today developed and evolved.
Scientists around the world are searching for evidence of dark matter. Among them are researchers from Johns Hopkins University. In their research, they drew attention to a phenomenon that has been troubling the scientific community for many decades. It is about the diffuse gamma-ray glow near the center of the Milky Way. There are two main hypotheses explaining its appearance. According to the first, their source is rapidly rotating neutron stars. According to the other, it is all about the collision of dark matter particles.
Today, the Milky Way is a relatively closed system, with no materials entering or leaving it. But this was not always the case. During the first billion years, many smaller galaxies containing dark matter became part of it as building blocks. As dark matter particles were drawn toward the center of the galaxy and clustered together, the number of dark matter collisions increased.
An international team of researchers used supercomputers to create maps of the distribution of dark matter in the Milky Way, taking into account its formation history for the first time. When researchers included more realistic collisions with galaxies, their simulated maps matched the actual gamma-ray maps obtained by the Fermi space telescope.
These matching maps extend the triad of evidence suggesting that the excess gamma radiation in the center of the Milky Way may originate from dark matter. Gamma radiation emitted from collisions of dark matter particles will produce the same signal and have the same properties as that observed in the real world, researchers say, although this is not definitive proof.
An alternative explanation for the phenomenon is radiation emitted by rapidly rotating old neutron stars (millisecond pulsars). However, according to researchers, this theory is incomplete. To explain the observed pattern, there have to be more pulsars than astronomers have observed.
One of the components of the Cherenkov Telescope Array observatory. Source: Wikipedia
The final answer may come with the construction of a new gamma-ray telescope called the Cherenkov Telescope Array. Researchers believe that its higher-resolution data will finally help solve this paradox. They are already planning a new experiment that will either confirm or refute the dark matter hypothesis.
Unexpected discovery on Saturn's moon challenges view on chemistry before life emerged
Unexpected discovery on Saturn's moon challenges view on chemistry before life emerged
Researchers have long been interested in Saturn's largest moon, Titan, and its icy environment, which harbors lakes, seas, sand dunes and a thick atmosphere full of nitrogen, methane, and complex carbon-based chemistry. Titan share some commonality with the early evolution of our planet and may therefore give researchers clues to the origin of life.
Credit: NASA-JPL-Space Science Institute
Researchers at Chalmers University of Technology in Sweden and the US space agency NASA have made an unexpected discovery that challenges one of the basic rules of chemistry and provides new knowledge about Saturn's enigmatic moon Titan
In its extremely cold environment, normally incompatible substances can still be mixed. This discovery broadens our understanding of chemistry before the emergence of life.
Scientists have long been interested in Saturn's largest, orange-colored moon as its evolution can teach us more about our own planet and the earliest chemical steps towards life. Titan's cold environment, and its thick nitrogen and methane-filled atmosphere, has many similarities to the conditions thought to have existed on the young Earth billions of years ago. By studying Titan, researchers therefore hope to find clues about the origin of life.
Martin Rahm, Associate Professor at the Department of Chemistry and Chemical Engineering at Chalmers, has been working for a long time to understand more about what is happening on Titan. He now hopes that the research group's surprising discovery, that certain polar and nonpolar substances can combine, will inform future studies of Titan.
"These are very exciting findings that can help us understand something on a very large scale, a moon as big as the planet Mercury," he says.
New insights into the building blocks of life in extreme environments
The researchers' paper, which has been published in PNAS, shows that methane, ethane and hydrogen cyanide—which exist in large quantities in the atmosphere and on the surface of Titan—can interact in a manner that was not previously considered possible.
That hydrogen cyanide, an exceptionally polar molecule, can form crystals with completely nonpolar substances such as methane and ethane is surprising because such substances normally remain strictly separate, much like oil and water.
"The discovery of the unexpected interaction between these substances could affect how we understand Titan's geology and its strange landscapes of lakes, seas and sand dunes," says Martin Rahm, who led the study.
"In addition, hydrogen cyanide is likely to play an important role in the abiotic creation of several of life's building blocks, for example, amino acids, which are used for the construction of proteins, and nucleobases, which are needed for the genetic code. So our work also contributes insights into chemistry before the emergence of life, and how it might proceed in extreme, inhospitable environments."
An unanswered question led to NASA collaboration
The background to the Chalmers study is an unanswered question about Titan: What happens to hydrogen cyanide after it is created in Titan's atmosphere? Are there meters of it deposited on the surface or has it interacted or reacted with its surroundings in some way?
To seek the answer, a group at NASA's Jet Propulsion Laboratory (JPL) in California began conducting experiments in which they mixed hydrogen cyanide with methane and ethane at temperatures as low as 90 Kelvin (about -180 degrees Celsius). At these temperatures, hydrogen cyanide is a crystal, and methane and ethane are liquids.
When they studied such mixtures using laser spectroscopy, a method for examining materials and molecules at the atomic level, they found that the molecules were intact, but that something had still happened. To understand what, they contacted Martin Rahm's research group at Chalmers, which had conducted extensive research into hydrogen cyanide.
"This led to an exciting theoretical and experimental collaboration between Chalmers and NASA. The question we asked ourselves was a bit crazy: Can the measurements be explained by a crystal structure in which methane or ethane is mixed with hydrogen cyanide? This contradicts a rule in chemistry, 'like dissolves like," which basically means that it should not be possible to combine these polar and nonpolar substances," says Rahm.
Expanding the boundaries of chemistry
The Chalmers researchers used large scale computer simulations to test thousands of different ways of organizing the molecules in the solid state, in search of answers.
In their analysis, they found that hydrocarbons had penetrated the crystal lattice of hydrogen cyanide and formed stable new structures known as co-crystals.
"This can happen at very low temperatures, like those on Titan. Our calculations predicted not only that the unexpected mixtures are stable under Titan's conditions, but also spectra of light that coincide well with NASA's measurements," he says.
The discovery challenges one of the best-known rules of chemistry, but Martin Rahm does not think it is time to rewrite the chemistry books.
"I see it as a nice example of when boundaries are moved in chemistry and a universally accepted rule does not always apply," he says.
In 2034, NASA's space probe Dragonfly is expected to reach Titan, with the aim of investigating what is on its surface. Until then, Martin Rahm and his colleagues plan to continue exploring hydrogen cyanide chemistry, partly in collaboration with NASA.
"Hydrogen cyanide is found in many places in the universe, for example in large dust clouds, in planetary atmospheres and in comets. The findings of our study may help us understand what happens in other cold environments in space. And we may be able to find out if other nonpolar molecules can also enter the hydrogen cyanide crystals and, if so, what this might mean for the chemistry preceding the emergence of life," he says.
In 2028, the US space agency NASA plans to launch the Dragonfly space probe, which is expected to reach Titan in 2034. The aim is to study prebiotic chemistry, the chemistry that precedes life, and to look for signs of life.
More information: Fernando Izquierdo-Ruiz et al, Hydrogen cyanide and hydrocarbons mix on Titan, Proceedings of the National Academy of Sciences (2025). DOI: 10.1073/pnas.2507522122
Despite making up more than a quarter of the universe, dark matter has remained stubbornly hidden from scientists' telescopes for decades.
But researchers from Johns Hopkins University now believe they have found the evidence they have been searching for.
While the elusive substance doesn't give off any energy of its own, when dark matter particles collide, they produce a burst of gamma–ray radiation.
For this reason, researchers believe the mysterious gamma–ray glow coming from inside our very own galaxy could reveal exactly where dark matter is hiding.
'Dark matter dominates the universe and holds galaxies together,' said Professor Joseph Silk, co–author of the study.
'It's extremely consequential and we're desperately thinking all the time of ideas as to how we could detect it.
'Gamma rays, and specifically the excess light we're observing at the centre of our galaxy, could be our first clue.'
Scientists say that a glow of gamma ray radiation from the Milky Way could be evidence that dark matter exists. In a new paper, researchers argue that this glow is produced by colliding particles of dark matter
Dark matter is an elusive type of particle that makes up a large part of the extra mass that is 'missing' from most galaxies.
In their study, published in the journal Physical Review Letters, the researchers used supercomputers to create a map of where dark matter should be in the galaxy.
What made their approach different was that they took into account how the Milky Way came into existence.
'Our galaxy formed out of a vast cloud of dark matter,' explains Professor Silk.
'The ordinary matter cooled down and fell into the central regions, dragging along some dark matter for the ride.'
Over billions of years, the dark matter from these other systems gravitated to the dense galactic core, and the number of collisions increased.
When Professor Silk took these simulations and compared them to real pictures of the galaxy taken by Fermi, he found that their predictions were a match.
Although this isn't yet a 'smoking gun' for the existence of dark matter, it raises the tantalising possibility that the gamma ray glow really is coming from dark matter.
Speaking to the Daily Mail, Professor Silk said: 'Our key new result is that dark matter fits the gamma ray data at least as well as the rival neutron star hypothesis.
In a new paper, scientists simulated where they thought dark matter should be in the galaxy (illustrated), and worked out what the pattern of gamma rays should look like. When they compared this to the actually distribution of gamma rays they found that the predictions matched
We have increased the odds that dark matter has been indirectly detected.'
It is still possible that the gamma ray glow is being produced by spinning neutron stars.
Professor Silk says his 'great hope' is that the soon–to–be–constructed Cerenkov Telescope Array in Chile will be able to settle the debate once and for all.
This will be the world's most powerful gamma ray telescope, and should have the sensitivity to detect the tiny differences between gamma rays produced by dark matter and radiation from spinning neutron stars.
Alternatively, the telescope could scan nearby dwarf galaxies, which should be made mostly of dark matter.
'Detecting the same signal Fermi found for the galactic centre would confirm the dark matter hypothesis,' says Professor Silk.
Earth will travel right in front of the same Taurid meteor stream in 2032 that caused a mass extinction and worldwide flood ~12,800 years ago, plunging Earth into a mini-Ice Age for 1,300 years. Graham Hancock was right all this time but we did not listen to him.
Our solar system is a dangerous place, and every month Earth inches closer to one of its riskier places, the “Taurid swarm” of meteors. Our planet is predicted to pass directly through the “Taurid swarm” in November 2032.
An ancient monument found in Turkey might be more than just a monument—it could be the world’s oldest solar calendar. Researchers from the University of Edinburgh studied symbols carved on the pillars of Göbekli Tepe, a large, ancient site in southern Turkey. They think these carvings were used to track days, seasons, and years, like a calendar. (Source)
The team noticed that each “V” shape carved on the pillars might represent one day. One pillar even had 365 “V”s, the same number as days in a year. They also found that a special “V” around the neck of a bird-like figure could represent the summer solstice—the longest day of the year. This might explain why the “V” symbol shows up on many other statues in the area, often around the necks of figures connected to time and creation.
Göbekli Tepe aerial view
Mini Ice Age
The ancient calendar focused on tracking day, night, and seasonal changes, which might have become more important after a major comet hit Earth around 10,850 B.C. This event likely caused a mini-ice age that wiped out many species. According to Martin Sweatman, a researcher from the University of Edinburgh, the people at Gobekli Tepe were careful observers of the sky, possibly because the comet strike had changed their world.
This disaster may have sparked the beginning of civilization by starting new religious beliefs and pushing people to develop agriculture to survive the colder climate. Their carvings might be some of the earliest attempts at writing. These carvings also tracked the cycles of the Moon and Sun, long before similar calendars were made. They may have even shown for the first time that comet strikes are more likely to happen when Earth crosses the path of comet fragments, something that modern scientists have confirmed.
To help support this theory, the team points to another pillar at the site appearing to picture the Taurid meteor stream lasting 27 days, which was quite possibly the source of the ancient comet strike. The researchers believe that the temple carvings show the ancient civilization was recording dates precisely, noting how the movement of constellations across the sky differed based on the time of the year. This would be 10,000 years before Hipparchus of ancient Greece documented the wobble in the Earth’s axis in 150 BC, making this newfound calendar well ahead of its time.
The Younger Dryas boundary (YDB) cosmic-impact hypothesis suggests that around 12,800 years ago, Earth was hit by pieces of a large comet, which broke apart as it entered the inner solar system. This event likely caused a chain reaction, leading to an “impact winter” (a period of intense cold) and a climate change episode called the Younger Dryas (YD). (Source)
The collision is also believed to have caused massive wildfires, the extinction of large animals like mammoths, and changes in human cultures and population decline. Evidence of this impact includes unusually high levels of platinum found at 26 sites across the Northern Hemisphere, including in ice cores from Greenland, which show platinum deposits over a 21-year period.
The start of the Younger Dryas also shows an increase in dust and chemicals linked to wildfires, like ammonium and other burning aerosols, found in ice cores from Greenland, Antarctica, and Russia. These signs point to one of the biggest wildfire events in over 120,000 years, with about 9% of Earth’s forests burned, covering 10 million square kilometers.
This large-scale burning and the cooling effect of the impact may have triggered the Younger Dryas climate change, according to the theory.
A 2021 study (Taurid complex smoking gun) found that 88 near-Earth asteroids, hidden in the debris that creates the Taurid Meteor Shower, likely came from the breakup of a single comet about 20,000 years ago. Astronomers at the University of Antioquia in Colombia studied the ‘Taurid complex’ to learn more about where these objects came from.
In the 1980s, scientists William Napier and Victor Clube noticed large asteroids in the Taurid stream. They suggested these asteroids had the same origin as Comet Encke, which orbits the Sun every three years. However, some asteroids are over a mile wide, meaning they couldn’t have come from Comet Encke itself. Scientists Ignacio Ferrín and Vincenzo Orofino reviewed old research and measured light reflected from the larger asteroids.
They found more evidence that both Comet Encke and the big asteroids came from the breakup of a huge ice comet, 62 miles wide, about 20,000 years ago. The team warned that these asteroids could be dangerous to Earth, and others from the ancient comet might have already hit our planet in the past. Every year, Earth passes through a stream of debris, causing shooting stars to appear in October in the southern hemisphere and November in the north.
Comet Encke, first seen in 1786, left a trail of debris as it got closer to the sun, like other comets. This trail, made up of rocks, dust, and debris, sometimes comes close to Earth, leading to lots of scientific study. Some studies focus on larger asteroids.
Experts think impacts from the Taurid stream may have contributed to the extinction of ancient cultures and global cooling during the Younger Dryas period. The 1908 Tunguska event, where a small asteroid exploded above Russia, destroying millions of trees, is believed to be connected to this debris stream.
In 2013, the Chelyabinsk meteor, which injured over 1,500 people in Russia, may have also come from the Taurid stream. In 2005, NASA astronomer Rob Suggs observed a flash from a meteor hitting the moon, which was part of the Taurid meteor shower.
A team of Colombian researchers, along with astronomers from Italy’s University of Salento, reviewed many studies on space impacts. They confirmed that a group of space objects contains up to 88 large pieces. Using a method called secular light curves, they noticed changes in the brightness of these objects and found that 67% showed signs of “comet-like” activity. This supported the idea that these objects came from a common origin.
Napier, another scientist, supported their findings. He said that these asteroids, which have orbits like Comet Encke, could either be affected by unknown forces or are pieces of a larger, older comet that lost its gases. This original comet may have been a “rubble pile” – a mix of rocks and other materials held together by ice. Over time, this pile could have broken apart, possibly due to forces from the Sun or another object, creating smaller fragments.
One asteroid, Oljato, is an example of a rubble pile. It’s still held together by ice, which gives it comet-like activity, but it’s much smaller than its parent. Bigger inactive objects like Morpheus are similar, but their ice is trapped inside. Smaller objects, like 2006 SO198, might be the original rocky pieces. The team explained that even if an object looks like a regular asteroid, it could still have a comet-like origin.
Taurid meteors, part of this group, are usually larger than normal meteors. They shine brightly and go deeper into the Earth’s atmosphere, sometimes creating fireballs. While this is mostly harmless, the discovery of larger asteroids in one “dangerous” part of the meteor stream could be a real threat.
Earth passes through this risky area every few years, leading to more shooting stars and possibly large objects hitting Earth instead of burning up in the atmosphere. Future encounters are expected in 2022, 2025, 2032, and 2039.
In 2021, David Asher, Armagh Observatory astronomer predicted that in 2032 and 2036 we are likely to pass through the centre of the Taurid complex, where there will be a ‘noticeable enhancement of fireballs.’ According to study [Taurid complex smoking gun] authors Ignacio Ferrín and Vincenzo Orofino, outgassing from comet-like objects within the complex could be hiding smaller, but still potentially dangerous, asteroids that might hit the Earth.
‘The Tunguska cosmic body was 60 to 90 meters in diameter,’ he told Discover Magazine, adding that we ‘now believe the complex may contain many more objects of that size. It is not the tame, simple and innocent complex we thought it was.’
The volcano Syrtis Major region of Mars. The central part is dominated by dark dust and lava flows of Syrtis Major Planitia. This is just one of the volcanoes that may be responsible for ice on Mars (Credit : NASA)
Between 4.1 and 3 billion years ago, Mars was volcanically active. Massive eruptions existed across the planet's surface, throwing material and gases high into the thin Martian atmosphere. A new study uses climate modelling to explore whether these events could have transported water ice to unexpected regions of the red planet. The team, led by Saira Hamid from Arizona State University simulated the ancient volcanic eruptions to see what happened to water vapour during each event. The results from their study were quite surprising.
When water vapour shot into Mars’s cold atmosphere from volcanic eruptions, it froze rapidly, creating ice crystals that fell back to the surface. The simulations showed that a single three day eruption could deposit ice layers up to five metres thick on the Martian surface, building up substantial accumulations over time. But this leaves the crucial question of just how this ice could possibly survive billions of years in equatorial regions where temperatures should cause it to sublimate into a gas and straight into the atmosphere? The answer lies in what happened after the eruptions ended.
Volcano Tavurvur in Papua New Guinea erupting
(Credit : Taro Taylor)
If volcanic debris, dust, or lava flows buried these ice deposits quickly enough, its likely they would have been insulated from direct exposure to sunlight and the thin atmosphere. Protected beneath these layers, the ice could remain stable for geological timescales, even in regions where surface ice would normally be impossible. These eruptions could also have released sulphuric acid into the Martian atmosphere, which could have plunged the entire planet into a prolonged global winter. This extended cold period would have allowed ice to accumulate not just during individual eruptions but over sustained periods, creating even more substantial deposits.
The research team identified a two volcanoes that could explain the ice deposits observed in equatorial regions today; Syrtis Major and Apollinaris Mons. Apollinaris Mons is an ancient volcano situated centrally within the Medusae Fossae Formation, erupted between 3.9 and 3.5 billion years ago. The proximity of these volcanoes to regions showing the highest hydrogen signatures suggests these ancient eruptions may have been directly responsible for creating equatorial ice reservoirs.
False colour Mars Global Surveyor image of Apollinaris Mons. White clouds can be seen hovering above the volcano (Credit : NASA/JPL/MSSS)
Measurements taken from orbit reveal elevated hydro
gen levels around the equatorial regions which aligns well with these new volcanic models. While these hydrogen signatures aren't definitive proof of buried ice, they strengthen the case that ancient volcanic activity may have delivered frozen water to some of the warmest regions of Mars, where it patiently waits beneath the surface for future explorers to discover.
If these ice deposits truly exist beneath the equatorial surface, they could prove invaluable for future human exploration. The equatorial regions on Mars offer more favourable landing sites than the rather more harsh polar environments, and access to water ice would be transformative for any crewed mission. Ice could provide drinking water, be split into oxygen for breathing, or even be converted into rocket fuel for the return journey to Earth. Although any astronaut heading to Mars without enough fuel to get home is made of stronger stuff than I!
The Sun photographed at 304 angstroms by the Atmospheric Imaging Assembly (AIA 304) of NASA's Solar Dynamics Observatory (Credit : NASA/SDO (AIA))
The corona of the Sun is an extraordinary place, with temperatures exceeding one million degrees Celsius, far hotter than the Sun's visible surface below. During solar flares, violent releases of magnetic energy, plasma can cool dramatically and condense into dense blobs that plummet back toward the Sun's photosphere, its visible surface. These falling streams of cooler material create the phenomenon of coronal rain. However, existing solar models couldn't explain the speed at which this cooling happens.
During a total solar eclipse, the Sun's corona and prominences are visible to the naked eye
(Credit : Luc Viatour)
Traditional solar models assumed that the distribution of specific elements throughout the corona remains constant across both space and time. This simplification made calculations manageable but created a significant problem when scientists tried to match their models with actual observations. Earlier theories required heating over hours or even days to produce the conditions necessary for coronal rain, yet solar flares unfold in mere minutes. Something fundamental was clearly missing from the picture.
Luke Benavitz, a graduate student, and astronomer Jeffrey Reep discovered the missing piece. Their research, demonstrates that allowing elemental abundances to vary with time produces models that finally match real solar observations. Elements like iron don't remain uniformly distributed in the corona but shift dynamically as conditions change. When this variation is plugged into the models, coronal rain can form on the timescales actually observed during solar flares.
Material rises from the edge of the Sun during a solar flare, as seen in extreme ultraviolet light by NASA's Solar Dynamics Observatory
(Credit : NASA/SDO)
Scientists use cooling processes to help understand heating mechanisms in the corona, since they cannot directly observe how energy is deposited into this region. If models have been treating the abundance of elements incorrectly as they have been, then estimates of cooling times have likely been wrong as well. This realisation suggests that fundamental assumptions about coronal heating may need revisiting.
Understanding that the distribution of elements change dynamically opens entirely new avenues for research into how the Sun's outer layers behave and how energy travels through its atmosphere. These insights could eventually improve predictions of solar storms, the space weather that can disrupt satellites, power grids, and communications systems on Earth.
What began as an investigation into a curious solar phenomenon has revealed that our models of the Sun's behaviour need considerable refinement. Sometimes the most important scientific breakthroughs come not from discovering entirely new phenomena, but from recognising that familiar assumptions were previously wrong.
A Christian pastor who accurately foresaw the assassination attempt on Donald Trump three months prior has shared a new vision about a threat in the sky.
'A major distraction is about to take place,' Biggs said in a YouTube video. 'I said, 'Lord, are there two of these?' And he said, 'No, it's just one.'
'That's what's going to make everybody freak out because they're going to see it moving across the ocean. It's going to be something that's going to be on TV.'
Biggs shared the vision in July, just weeks after 3I/ATLAS was identified, claiming that it is not aliens, but 'demonic spirits.'
'There is no such thing as aliens. You need to hear me. But there are going to be things in the sky that are going to scare everybody in the days ahead because people are going to go, 'Oh, no. ET really exists.' No, it's fallen angels,' he said.
Biggs admitted he did not know when his vision was set to take place, but warned that it would appear as a 'demonic-looking light' in the night sky.
His prediction has been met with criticisms online, with many users calling Biggs a 'false prophet.'
While there is no scientific or credible evidence to back up the claims, Biggs had accurately predicted the attack on Trump last year.
In April, Biggs posted a video detailing what he saw.
'This bullet flew by his ear, and it came so close to his head that it busted his eardrum,' he said
While there are wild theories about the object, dubbed 3I/ATLAS, NASA has long determined it is nothing more than a comet from another part of the universe
Also during the segment, Biggs said he saw red waves in Michigan and Oklahoma during the 2024 Election, which ultimately occurred in both states.
Now that those predictions have come and passed, social media users fear the last vision could also come true.
Loeb has also floated the idea that it is a mothership set to release tiny probes to intercept Earth.
Read More
Interstellar object spotted carrying mysterious companion that points to 'technological design'
Dr Matthew Genge, a planetary scientist from Imperial College London, dismissed Loeb's claims, telling the Daily Mail that 3I/ATLAS is a natural object.
'Little green men certainly aren't responsible!' he added.
Loeb said this week that the world will soon know the true origins of 3I/ATLAS, as the object will make its closest approach to the sun on October 29.
If it is a comet, it should 'disintegrate into fragments.'
'When a comet gets close to the sun, solar radiation heats its icy nucleus,' Loeb explained.
'Volatile ices like carbon dioxide, carbon monoxide, or water sublimate directly into gas, carrying away dust and small rocks.
'This process can cause the comet to break apart if the mix of ice and dust cannot withstand the thermal stress.'
The European Space Agency's Jupiter probe will have a front-row seat, capturing the moment it either breaks apart or, as Loeb speculated, 'releases mini-probes as a technological mothership.'
Loeb noted there is a 30 to 40 percent chance the object 'does not have a fully natural origin,' noting the possibility it is a 'Trojan Horse,' where a technological object masquerades as a comet.
The ESA's Jupiter Icy Moons Explorer (Juice) craft will have a view of the object when it comes 125 million miles from the planet and monitor it through November.
'During November and December, terrestrial observatories will also be able to monitor 3I/ATLAS and check whether it disintegrated like a natural comet or released mini-probes as a technological mothership,' Loeb explained.
On October 15–16, the recently discovered asteroid 2025 TP5 made a close flyby of Earth and then the Moon. It flew past our planet at a distance of less than 100,000 km. This is about four times less than the average distance between the Earth and the Sun.
Four times closer than the Moon: A small asteroid flew near Earth
A near-Earth asteroid in an artist’s impression. Source: space.com
Over the past few decades, astronomers have made significant efforts to catalog and search for potentially dangerous asteroids that could pose a threat to Earth. Their detection is handled, in particular, by the ATLAS system, which is funded by NASA. It consists of four automated telescopes, two of which are located in Hawaii, one in Chile, and another in South Africa. It was the ATLAS system that discovered thefamous interstellar comet 3I/ATLAS, which is currently approaching the Sun.
On October 13, ATLAS telescopes discovered a previously unknown asteroid, designated 2025 TP5. Its diameter is 16 meters.
On October 15, 2025, TP5 flew close to Earth. According to NASA’s Jet Propulsion Laboratory, the minimum distance between the two bodies was 97,089 km. This is significantly less than the distance of most similar visits. However, in any case, the approach posed no threat to Earth. And the very next day, 2025 TP5 flew past the Moon at a distance of 120,084 km, which is also quite close by cosmic standards.
Interestingly, in 1979, 2025 TP5 already made a close flyby of Earth. But no one noticed the asteroid at that time. The discovery of 2025 TP5 clearly demonstrates the significantly increased capabilities of astronomers in searching for near-Earth asteroids. Technology has advanced to such an extent that several small asteroids approaching Earth are now detected every month. Recall that one of them flew over Earth at the altitude of the International Space Station in early October.
Beste bezoeker, Heb je zelf al ooit een vreemde waarneming gedaan, laat dit dan even weten via email aan Frederick Delaere opwww.ufomeldpunt.be. Deze onderzoekers behandelen jouw melding in volledige anonimiteit en met alle respect voor jouw privacy. Ze zijn kritisch, objectief maar open minded aangelegd en zullen jou steeds een verklaring geven voor jouw waarneming! DUS AARZEL NIET, ALS JE EEN ANTWOORD OP JOUW VRAGEN WENST, CONTACTEER FREDERICK. BIJ VOORBAAT DANK...
Druk op onderstaande knop om je bestand , jouw artikel naar mij te verzenden. INDIEN HET DE MOEITE WAARD IS, PLAATS IK HET OP DE BLOG ONDER DIVERSEN MET JOUW NAAM...
Druk op onderstaande knop om een berichtje achter te laten in mijn gastenboek
Alvast bedankt voor al jouw bezoekjes en jouw reacties. Nog een prettige dag verder!!!
Over mijzelf
Ik ben Pieter, en gebruik soms ook wel de schuilnaam Peter2011.
Ik ben een man en woon in Linter (België) en mijn beroep is Ik ben op rust..
Ik ben geboren op 18/10/1950 en ben nu dus 75 jaar jong.
Mijn hobby's zijn: Ufologie en andere esoterische onderwerpen.
Op deze blog vind je onder artikels, werk van mezelf. Mijn dank gaat ook naar André, Ingrid, Oliver, Paul, Vincent, Georges Filer en MUFON voor de bijdragen voor de verschillende categorieën...
Veel leesplezier en geef je mening over deze blog.